1,221 research outputs found
The use of time-resolved fluorescence imaging in the study of protein kinase C localisation in cells
Background: Two-photon-excitation fluorescence lifetime imaging (2P-FLIM) was used to investigate the association of protein kinase C alpha (PKCα) with caveolin in CHO cells. PKCα is found widely in the cytoplasm and nucleus in most cells. Upon activation, as a result of increased intracellular Ca2+ and production of DAG, through G-protein coupled-phospholipase C signalling, PKC translocates to a variety of regions in the cell where it phosphorylates and interacts with many signalling pathways. Due to its wide distribution, discerning a particular interaction from others within the cell is extremely difficult.
Results: Fluorescence energy transfer (FRET), between GFP-PKCα and DsRed-caveolin, was used to investigate the interaction between caveolin and PKC, an aspect of signalling that is poorly understood. Using 2P-FLIM measurements, the lifetime of GFP was found to decrease (quench) in certain regions of the cell from ~2.2 ns to ~1.5 ns when the GFP and DsRed were sufficiently close for FRET to occur. This only occurred when intracellular Ca2+ increased or in the presence of phorbol ester, and was an indication of PKC and caveolin co-localisation under these conditions. In the case of phorbol ester stimulated PKC translocation, as commonly used to model PKC activation, three PKC areas could be delineated. These included PKCα that was not associated with caveolin in the nucleus and cytoplasm, PKCα associated with caveolin in the cytoplasm/perinuclear regions and probably in endosomes, and PKC in the peripheral regions of the cell, possibly indirectly interacting with caveolin.
Conclusion: Based on the extent of lifetime quenching observed, the results are consistent with a direct interaction between PKCα and caveolin in the endosomes, and possibly an indirect interaction in the peripheral regions of the cell. The results show that 2P-FLIM-FRET imaging offers an approach that can provide information not only confirming the occurrence of specific protein-protein interactions but where they occur within the cell
New Approaches to Photodynamic Therapy from Type I, II and III to Type IV Using One or More Photons
Photodynamic therapy (PDT) is an alternative cancer treatment to conventional surgery, radiotherapy and chemotherapy. It is based on activating a drug with light that triggers the generation of cytotoxic species that promote tumour cell killing. At present, PDT is mainly used in the treatment of wet age-related macular degeneration, for precancerous conditions of the skin (e.g. actinic keratosis) and in the palliative care of advanced cancers, for instance of the bladder or the oesophagus. PDT is still not used as a first line cancer treatment, which is surprising given the first clinical trials by Dougherty’s group dating back to the 1970’s. PDT has significant advantages over surgery or radiation therapy for low lying tumours due to better cosmetic outcome and localised treatment for the patients. However, despite these advantages and significant developments in optical technology that has enabled light penetration to deeper lying tumours, in excess of 5 cm, a lack of phase III clinical trials has slowed down the uptake of PDT by the healthcare sector as a frontline treatment in cancer. However research continues to demonstrate the potential benefits of PDT and the need to stimulate funding and uptake of clinical studies using next generation photosensitizers offering advanced targeted delivery, improved photodynamic dose combined with modern light delivery technologies. This review surveys the available PDT treatments and emerging novel developments in the field with a particular focus on two-photon techniques that are anticipated to improve the effectiveness of PDT in tissues at depth and on next generation drugs that work without the need of the presence of oxygen for photosensitization making them effective where hypoxia has taken hold
Sharing individual patient and parasite-level data through the WorldWide Antimalarial Resistance Network platform: A qualitative case study.
BACKGROUND: Increasingly, biomedical researchers are encouraged or required by research funders and journals to share their data, but there's very little guidance on how to do that equitably and usefully, especially in resource-constrained settings. We performed an in-depth case study of one data sharing pioneer: the WorldWide Antimalarial Resistance Network (WWARN). METHODS: The case study included a records review, a quantitative analysis of WAARN-related publications, in-depth interviews with 47 people familiar with WWARN, and a witness seminar involving a sub-set of 11 interviewees. RESULTS: WWARN originally aimed to collate clinical, in vitro, pharmacological and molecular data into linked, open-access databases intended to serve as a public resource to guide antimalarial drug treatment policies. Our study describes how WWARN navigated challenging institutional and academic incentive structures, alongside funders' reluctance to invest in capacity building in malaria-endemic countries, which impeded data sharing. The network increased data contributions by focusing on providing free, online tools to improve the quality and efficiency of data collection, and by inviting collaborative authorship on papers addressing policy-relevant questions that could only be answered through pooled analyses. By July 1, 2016, the database included standardised data from 103 molecular studies and 186 clinical trials, representing 135,000 individual patients. Developing the database took longer and cost more than anticipated, and efforts to increase equity for data contributors are on-going. However, analyses of the pooled data have generated new methods and influenced malaria treatment recommendations globally. Despite not achieving the initial goal of real-time surveillance, WWARN has developed strong data governance and curation tools, which are now being adapted relatively quickly for other diseases. CONCLUSIONS: To be useful, data sharing requires investment in long-term infrastructure. To be feasible, it requires new incentive structures that favour the generation of reusable knowledge
Single- and multi-photon excited fluorescence from serotonin complexed with B-cyclodextrin
The fluorescence of serotonin on binding with B-cyclodextrin has been studied using both steady-state and time-resolved methods. Steady state fluorescence intensity of serotonin at 340 nm showed ~ 30% increase in intensity on binding with Ka ~ 60 dm3 mol 1 and the fluorescence lifetimes showed a corresponding increase. In contrast, the characteristic green fluorescence (‘hyperluminescence’) of serotonin observed upon multiphoton near-infrared excitation with sub-picosecond pulses was resolved into two lifetime components assigned to free and bound serotonin. The results are of interest in relation to selective imaging and detection of serotonin using the unusual hyperluminescence emission and in respect to recent determinations of serotonin by capillary electrophoresis in the presence of cyclodextrin. The results also suggest that hyperluminescence occurs from multiphoton excitation of a single isolated serotonin molecule
The use of DAPI fluorescence lifetime imaging for investigating chromatin condensation in human chromosomes
Chromatin undergoes dramatic condensation and decondensation as cells transition between the different phases of the cell cycle. The organization of chromatin in chromosomes is still one of the key challenges in structural biology. Fluorescence lifetime imaging (FLIM), a technique which utilizes a fluorophore’s fluorescence lifetime to probe changes in its environment, was used to investigate variations in chromatin compaction in fixed human chromosomes. Fixed human metaphase and interphase chromosomes were labeled with the DNA minor groove binder, DAPI, followed by measurement and imaging of the fluorescence lifetime using multiphoton excitation. DAPI lifetime variations in metaphase chromosome spreads allowed mapping of the differentially compacted regions of chromatin along the length of the chromosomes. The heteromorphic regions of chromosomes 1, 9, 15, 16, and Y, which consist of highly condensed constitutive heterochromatin, showed statistically significant shorter DAPI lifetime values than the rest of the chromosomes. Differences in the DAPI lifetimes for the heteromorphic regions suggest differences in the structures of these regions. DAPI lifetime variations across interphase nuclei showed variation in chromatin compaction in interphase and the formation of chromosome territories. The successful probing of differences in chromatin compaction suggests that FLIM has enormous potential for application in structural and diagnostic studies
Assessment of Customer Expectation and Perception of Service Quality Delivery in Ghana Commercial Bank
The study is to determine customers\u27 expectations and perception of quality of servicedelivery of Ghana Commercial Banks Limited. The study also aims at determining thegap between customers\u27 expectation and perception of service quality delivery(customer satisfaction /dissatisfaction) of the banks. To achieve the main aim of thestudy, the following specific objectives have been set out; determine customers\u27expectations of the quality of service delivery of GCB, measure customers\u27 perceptionof the quality of service delivery of GCB, determine the gap (customer satisfaction ordissatisfaction) between customers\u27 perception and expectation of service qualitydelivery of the bank
Recommended from our members
Fluorescence lifetime imaging microscopy (FLIM) to demonstrate the nuclear binding of flavanols and (--epigallocatechin gallate
The use of light microscopy and DMACA staining strongly suggested that plant and animal cell nuclei act as sinks for flavanols [1, 2]. Detailed uv-vis spectroscopic titration experiments indicated that histone proteins are the likely binding sites in the nucleus [2]. Here we report the development of a multi-photon excitation microscopy technique combined with fluorescent lifetime measurements of flavanols. Using this technique, (+) catechin, (-) epicatechin and (-) epigallocatechin gallate (EGCG) showed strikingly different excited state lifetimes in solution. Interaction of histone proteins with flavanols was indicated by the appearance of a significant τ2-component of 1.7 to 4.0ns. Tryptophan interference could be circumvented in the in vivo fluorescence lifetime imaging microscopy (FLIM) experiments with 2-photon excitation at 630nm. This enabled visualisation and semi-quantitative measurements that demonstrated unequivocally the absorption of (+)catechin, (-)epicatechin and EGCG by nuclei of onion cells. 3D FLIM revealed for the first time that externally added EGCG penetrated the whole nucleus in onion cells. The relative proportions of EGCG in cytoplasm: nucleus: nucleoli were ca. 1:10:100. FLIM experiments may therefore facilitate probing the health effects of EGCG, which is the major constituent of green tea
Directed Molecular Stacking for Engineered Fluorescent Three-Dimensional Reduced Graphene Oxide and Coronene Frameworks
[EN] Three‐dimensional fluorescent graphene frameworks with controlled porous morphologies are of significant importance for practical applications reliant on controlled structural and electronic properties, such as organic electronics and photochemistry. Here we report a synthetically accessible approach concerning directed aromatic stacking interactions to give rise to new fluorogenic 3D frameworks with tuneable porosities achieved through molecular variations. The binding interactions between the graphene‐like domains present in the in situ‐formed reduced graphene oxide (rGO) with functional porphyrin molecules lead to new hybrids via an unprecedented solvothermal reaction. Functional free‐base porphyrins featuring perfluorinated aryl groups or hexyl chains at their meso‐ and β‐positions were employed in turn to act as directing entities for the assembly of new graphene‐based and foam‐like frameworks and of their corresponding coronene‐based hybrids. Investigations in the dispersed phase and in thin‐film by XPS, SEM and FLIM shed light onto the nature of the aromatic stacking within functional rGO frameworks (denoted rGOFs) which was then modelled semi‐empirically and by DFT calculations. The pore sizes of the new emerging reduced graphene oxide hybrids are tuneable at the molecular level and mediated by the bonding forces with the functional porphyrins acting as the “molecular glue”. Single crystal X‐ray crystallography described the stacking of a perfluorinated porphyrin with coronene, which can be employed as a molecular model for understanding the local aromatic stacking order and charge transfer interactions within these rGOFs for the first time. This opens up a new route to controllable 3D framework morphologies and pore size from the Ångstrom to the micrometre scale. Theoretical modelling showed that the porosity of these materials is mainly due to the controlled inter‐planar distance between the rGO, coronene or graphene sheets. The host‐guest chemistry involves the porphyrins acting as guests held through π‐π stacking, as demonstrated by XPS. The objective of this study is also to shed light into the fundamental localised electronic and energy transfer properties in these new molecularly engineered porous and fluorogenic architectures, aiming in turn to understand how functional porphyrins may exert stacking control over the notoriously disordered local structure present in porous reduced graphene oxide fragments. By tuning the porosity and the distance between the graphene sheets using aromatic stacking with porphyrins, it is also possible to tune the electronic structure of the final nanohybrid material, as indicated by FLIM experiments on thin films. Such nanohybrids with highly controlled pores dimensions and morphologies open the way to new design and assembly of storage devices and applications incorporating π‐conjugated molecules and materials and their π‐stacks may be relevant towards selective separation membranes, water purification and biosensing applications.S.I.P. and S.W.B. thank The Royal Society and STFC for funding. B.Y.M. thanks the University of Bath for a studentship (ORS). D.G.C. thanks the Fundación General CSIC for funding (ComFuturo Program). Dr. Jose A. Ribeiro Martins, Professors Jeremy K. M. Sanders and Paul Raithby are acknowledged for training, helpful discussions and porphyrin supramolecular chemistry. The S.I.P. group thanks the EPSRC for funding to the Centre of Graphene Science (EP/K017160/1) and to the Centre for Doctoral Training in Sustainable Chemical Technologies (EP/L016354/1). The authors thank EPSRC National Service for Mass Spectrometry at Swansea and EPSRC National Service for Crystallography at Southampton for data collection. The authors also acknowledge the ERC for the Consolidator Grant O2SENSE (617107, 2014–2019)
Oxygen mapping of melanoma spheroids using small molecule platinum probe and phosphorescence lifetime imaging microscopy
Solid tumours display varied oxygen levels and this characteristic can be exploited to develop new diagnostic tools to determine and exploit these variations. Oxygen is an efficient quencher of emission of many phosphorescent compounds, thus oxygen concentration could in many cases be derived directly from relative emission intensity and lifetime. In this study, we extend our previous work on phosphorescent, low molecular weight platinum(II) complex as an oxygen sensing probe to study the variation in oxygen concentration in a viable multicellular 3D human tumour model. The data shows one of the first examples of non-invasive, real-time oxygen mapping across a melanoma tumour spheroid using one-photon phosphorescence lifetime imaging microscopy (PLIM) and a small molecule oxygen sensitive probe. These measurements were quantitative and enabled real time oxygen mapping with high spatial resolution. This combination presents as a valuable tool for optical detection of both physiological and pathological oxygen levels in a live tissue mass and we suggest has the potential for broader clinical application
- …
