349 research outputs found
Multiple-Scattering Series For Color Transparency
Color transparency CT depends on the formation of a wavepacket of small
spatial extent. It is useful to interpret experimental searches for CT with a
multiple scattering scattering series based on wavepacket-nucleon scattering
instead of the standard one using nucleon-nucleon scattering. We develop
several new techniques which are valid for differing ranges of energy. These
techniques are applied to verify some early approximations; study new forms of
the wave-packet-nucleon interaction; examine effects of treating wave packets
of non-zero size; and predict the production of 's in electron scattering
experiments.Comment: 26 pages, U.Wa. preprint 40427-23-N9
Wide-angle elastic scattering and color randomization
Baryon-baryon elastic scattering is considered in the independent scattering
(Landshoff) mechanism. It is suggested that for scattering at moderate
energies, direct and interchange quark channels contribute with equal color
coefficients because the quark color is randomized by soft gluon exchange
during the hadronization stage. With this assumption, it is shown that the
ratio of cross sections at CM angle
decreases from a high energy value of R_{\pbar p / pp} \approx 1/2.7, down to
R_{\pbar p / pp} \approx 1/28, compatible with experimental data at moderate
energies. This sizable fall in the ratio seems to be characteristic of the
Landshoff mechanism, in which changes at the quark level have a strong effect
precisely because the hadronic process occurs via multiple quark scatterings.
The effect of color randomization on the angular distribution of proton-proton
elastic scattering and the cross section ratio is also discussed.Comment: 18 pages, latex2e, 4 uuencoded figures, include
Multivariate Fitting and the Error Matrix in Global Analysis of Data
When a large body of data from diverse experiments is analyzed using a
theoretical model with many parameters, the standard error matrix method and
the general tools for evaluating errors may become inadequate. We present an
iterative method that significantly improves the reliability of the error
matrix calculation. To obtain even better estimates of the uncertainties on
predictions of physical observables, we also present a Lagrange multiplier
method that explores the entire parameter space and avoids the linear
approximations assumed in conventional error propagation calculations. These
methods are illustrated by an example from the global analysis of parton
distribution functions.Comment: 13 pages, 5 figures, Latex; minor clarifications, fortran program
made available; Normalization of Hessian matrix changed to HEP standar
Vector-pseudoscalar two-meson distribution amplitudes in three-body meson decays
We study three-body nonleptonic decays by introducing two-meson
distribution amplitudes for the vector-pseudoscalar pair, such that the
analysis is simplified into the one for two-body decays. The twist-2 and
twist-3 two-meson distribution amplitudes, associated with
longitudinally and transversely polarized mesons, are constrained by the
experimental data of the and branching
ratios. We then predict the and decay
spectra in the invariant mass. Since the resonant contribution in the
channel is negligible, the above decay spectra provide a clean test
for the application of two-meson distribution amplitudes to three-body
meson decays.Comment: 9 pages, 1 figure, Revtex4, version to appear in PR
Cost Analysis In A Multi-Mission Operations Environment
Spacecraft control centers have evolved from dedicated, single-mission or single missiontype support to multi-mission, service-oriented support for operating a variety of mission types. At the same time, available money for projects is shrinking and competition for new missions is increasing. These factors drive the need for an accurate and flexible model to support estimating service costs for new or extended missions; the cost model in turn drives the need for an accurate and efficient approach to service cost analysis. The National Aeronautics and Space Administration (NASA) Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center (MSFC) provides operations services to a variety of customers around the world. HOSC customers range from launch vehicle test flights; to International Space Station (ISS) payloads; to small, short duration missions; and has included long duration flagship missions. The HOSC recently completed a detailed analysis of service costs as part of the development of a complete service cost model. The cost analysis process required the team to address a number of issues. One of the primary issues involves the difficulty of reverse engineering individual mission costs in a highly efficient multimission environment, along with a related issue of the value of detailed metrics or data to the cost model versus the cost of obtaining accurate data. Another concern is the difficulty of balancing costs between missions of different types and size and extrapolating costs to different mission types. The cost analysis also had to address issues relating to providing shared, cloud-like services in a government environment, and then assigning an uncertainty or risk factor to cost estimates that are based on current technology, but will be executed using future technology. Finally the cost analysis needed to consider how to validate the resulting cost models taking into account the non-homogeneous nature of the available cost data and the decreasing flight rate. This paper presents the issues encountered during the HOSC cost analysis process, and the associated lessons learned. These lessons can be used when planning for a new multi-mission operations center or in the transformation from a dedicated control center to multi-center operations, as an aid in defining processes that support future cost analysis and estimation. The lessons can also be used by mature serviceoriented, multi-mission control centers to streamline or refine their cost analysis process
Using Rapidity Gaps to Distinguish Between Higgs Production by W and Gluon Fusion
The possibility of distinguishing between two higgs production mechanisms, W
fusion and gluon fusion, is investigated using the Monte Carlo event generator
PYTHIA. It is shown that, considering the designed CM energy and luminosity for
the LHC, it is not possible to distinguish between the two higgs production
processes as, for a given integrated luminosity, they lead to the same number
of events containing a rapidity gap.Comment: uudecoded compressed tar file containing a tex file and 6 figure
files. Two more figures, avaiable from the authors upon reques
Diffractive vector meson electroproduction at small Bjorken within GPD approach
We study light vector meson electroproduction at small within the
generalized parton distributions (GPDs) model. The modified perturbative
approach is used, where the quark transverse degrees of freedom in the vector
meson wave function and hard subprocess are considered. Our results on the
cross section and spin observables are in good agreement with experimentComment: 6 pages, 5 figures, presented at Symmetries and Spin meeting, Prague,
8- 14 July, 200
Leading-Log Effects in the Resonance Electroweak Form Factors
We study log corrections to inelastic scattering at high Bjorken x for Q^2
from 1 to 21 GeV^2. At issue is the presence of log corrections, which can be
absent if high x scattering has damped gluon radiation. We find logarithmic
correction of the scaling curve extrapolated to low Q^2 improves the duality
between it and the resonance plus background data in the Delta region,
indicating log corrections exist in the data. However, at W > 2 GeV and high x,
the data shows a (1-x)^3 form. Log corrections in one situation but not in
another can be reconciled by a W- or Q^2- dependent higher twist correction.Comment: 13 pages, report nos. RPI-94-N90 and WM-94-106, revtex, two figures
(available by fax or post
Re-examination of the Perturbative Pion Form Factor with Sudakov Suppression
The perturbative pion form factor with Sudakov suppression is re-examined.
Taking into account the multi-gluon exchange in the law regions, we
suggest that the running coupling constant should be frozen at
and is the
average transverse momentum which can be determined by the pionic wave
function. In addition, we correct the previous calculations about the Sudakov
suppression factor which plays an important role in the perturbative
predictions for the pion form factor.Comment: 11 pages, LaTex file, 2 figures as uu-encoded postscript file
Fixed-Angle Elastic Hadron Scattering
The scattering amplitude in the dual model with Mandelstam analyticity and
trajectory is studied in the limit By
using the saddle point method, a series decomposition for the scattering
amplitude is obtained, with the leading and two sub-leading terms calculated
explicitly.Comment: 15 pages, LaTeX, 2 figures with eps file
- …
