261 research outputs found

    Great Efficiency of Nucleosides as Organizing Tools

    Get PDF
    Bis-porphyrins with flexible linkers such as uridine or 2’-deoxyuridin pre-organize in a face-to-face conformation and form stable sandwich complexes with bidentate base such as DABCO. The gain in stability can be even greater when a dinucleotide linker is used. Such pre-organization increases the association constant by one to two orders of magnitude when compared to the one of DABCO with a reference porphyrin. Comparison with rigid tweezers shows a better efficiency of nucleosidic dimers. The choice of rigid spacers is not the only way to pre-organize bis-porphyrins, and well-chosen nucleosidic linkers offer an interesting option for the synthesis of such devices

    High Field Solid-State NMR Spectroscopy Investigation of ^(15)N-Labeled Rosette Nanotubes: Hydrogen Bond Network and Channel-Bound Water

    Get PDF
    ^(15)N-labeled rosette nanotubes were synthesized and investigated using high-field solid-state NMR spectroscopy, X-ray diffraction, atomic force microscopy, and electron microscopy. The results established the H-bond network involved in the self-assembly of the nanostructure as well as bound water molecules in the nanotube’s channel

    Analisis Penerapan Sistem Akuntansi Penjualan Kredit Dan Penerimaan Kas Dalam Mendukung Pengendalian Intern Perusahaan (Studi Kasus PT. Smart Tbk Refinery Surabaya)

    Full text link
    System of selling credit accounting and system of cash receiving from account receivable is the source of life to achieving company goals. This research on the system of credit sales and cash receipts to support the company internal control. This research was conducted at PT. SMART Tbk Refinery Surabaya. PT. SMART Tbk Refinery Surabaya only selling cooking oil in the form of branded product and trading product on credit. PT. SMART Tbk Refinery Surabaya still has any weakness on system of selling credit accounting and system of cash receiving from account receivable, some of the sales transaction activity that occurred less supportive of the company\u27s internal control. This study aims to provide information to companies about the advantages and weakness of credit sales accounting system and cash receipts that have been applied by the company

    The Human Urine Metabolome

    Get PDF
    Urine has long been a “favored” biofluid among metabolomics researchers. It is sterile, easy-to-obtain in large volumes, largely free from interfering proteins or lipids and chemically complex. However, this chemical complexity has also made urine a particularly difficult substrate to fully understand. As a biological waste material, urine typically contains metabolic breakdown products from a wide range of foods, drinks, drugs, environmental contaminants, endogenous waste metabolites and bacterial by-products. Many of these compounds are poorly characterized and poorly understood. In an effort to improve our understanding of this biofluid we have undertaken a comprehensive, quantitative, metabolome-wide characterization of human urine. This involved both computer-aided literature mining and comprehensive, quantitative experimental assessment/validation. The experimental portion employed NMR spectroscopy, gas chromatography mass spectrometry (GC-MS), direct flow injection mass spectrometry (DFI/LC-MS/MS), inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) experiments performed on multiple human urine samples. This multi-platform metabolomic analysis allowed us to identify 445 and quantify 378 unique urine metabolites or metabolite species. The different analytical platforms were able to identify (quantify) a total of: 209 (209) by NMR, 179 (85) by GC-MS, 127 (127) by DFI/LC-MS/MS, 40 (40) by ICP-MS and 10 (10) by HPLC. Our use of multiple metabolomics platforms and technologies allowed us to identify several previously unknown urine metabolites and to substantially enhance the level of metabolome coverage. It also allowed us to critically assess the relative strengths and weaknesses of different platforms or technologies. The literature review led to the identification and annotation of another 2206 urinary compounds and was used to help guide the subsequent experimental studies. An online database containing the complete set of 2651 confirmed human urine metabolite species, their structures (3079 in total), concentrations, related literature references and links to their known disease associations are freely available at http://www.urinemetabolome.ca

    GC-MS metabolomics-based approach for the identification of a potential VOC-biomarker panel in the urine of renal cell carcinoma patients

    Get PDF
    The analysis of volatile organic compounds (VOCs) emanating from biological samples appears as one of the most promising approaches in metabolomics for the study of diseases, namely cancer. In fact, it offers advantages, such as non-invasiveness and robustness for high-throughput applications. The purpose of this work was to study the urinary volatile metabolic profile of patients with renal cell carcinoma (RCC) (n = 30) and controls (n = 37) with the aim of identifying a potential specific urinary volatile pattern as a non-invasive strategy to detect RCC. Moreover, the effect of some confounding factors such as age, gender, smoking habits and body mass index was evaluated as well as the ability of urinary VOCs to discriminate RCC subtypes and stages. A headspace solid-phase microextraction/gas chromatography-mass spectrometry-based method was performed, followed by multivariate data analysis. A variable selection method was applied to reduce the impact of potential redundant and noisy chromatographic variables, and all models were validated by Monte Carlo cross-validation and permutation tests. Regarding the effect of RCC on the urine VOCs composition, a panel of 21 VOCs descriptive of RCC was defined, capable of discriminating RCC patients from controls in principal component analysis. Discriminant VOCs were further individually validated in two independent samples sets (nine RCC patients and 12 controls, seven RCC patients with diabetes mellitus type 2) by univariate statistical analysis. Two VOCs were found consistently and significantly altered between RCC and controls (2-oxopropanal and, according to identification using NIST14, 2,5,8-trimethyl-1,2,3,4-tetrahydronaphthalene-1-ol), strongly suggesting enhanced potential as RCC biomarkers. Gender, smoking habits and body mass index showed negligible and age-only minimal effects on the urinary VOCs, compared to the deviations resultant from the disease. Moreover, in this cohort, the urinary volatilome did not show ability to discriminate RCC stages and histological subtypes. The results validated the value of urinary volatilome for the detection of RCC and advanced with the identification of potential RCC urinary biomarkers.info:eu-repo/semantics/publishedVersio

    NMR-based pharmacometabonomics: A new paradigm for personalised or precision medicine

    Get PDF
    Metabolic profiling by NMR spectroscopy or hyphenated mass spectrometry, known as metabonomics or metabolomics, is an important tool for systems-based approaches in biology and medicine. The experiments are typically done in a diagnostic fashion where changes in metabolite profiles are interpreted as a consequence of an intervention or event; be that a change in diet, the administration of a drug, physical exertion or the onset of a disease. By contrast, pharmacometabonomics takes a prognostic approach to metabolic profiling, in order to predict the effects of drug dosing before it occurs. Differences in pre-dose metabolite profiles between groups of subjects are used to predict post-dose differences in response to drug administration. Thus the paradigm is inverted and pharmacometabonomics is the metabolic equivalent of pharmacogenomics. Although the field is still in its infancy, it is expected that pharmacometabonomics, alongside pharmacogenomics, will assist with the delivery of personalised or precision medicine to patients, which is a critical goal of 21st century healthcare

    Efficiency of Dinucleosides as the Backbone to Pre-Organize Multi-Porphyrins and Enhance Their Stability as Sandwich Type Complexes with DABCO

    Get PDF
    Flexible linkers such as uridine or 2′-deoxyuridine pre-organize bis-porphyrins in a face-to-face conformation, thus forming stable sandwich complexes with a bidentate base such as 1, 4-diazabicyclo[2.2.2]octane (DABCO). Increased stability can be even greater when a dinucleotide linker is used. Such pre-organization increases the association constant by one to two orders of magnitude when compared to the association constant of DABCO with a reference porphyrin. Comparison with rigid tweezers shows a better efficiency of nucleosidic dimers. Thus, the choice of rigid spacers is not the only way to pre-organize bis-porphyrins, and well-chosen nucleosidic linkers offer an interesting option for the synthesis of such devices

    Urinary proteome and metabolome in dogs (Canis lupus familiaris): The effect of chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a progressive and irreversible disease. Although urine is an ideal biological sample for proteomics and metabolomics studies, sensitive and specific biomarkers are currently lacking in dogs. This study characterised dog urine proteome and metabolome aiming to identify and possibly quantify putative biomarkers of CKD in dogs. Twenty-two healthy dogs and 28 dogs with spontaneous CKD were selected and urine samples were collected. Urinary proteome was separated by SDS-PAGE and analysed by mass spectrometry, while urinary metabolome was analysed in protein-depleted samples by 1D 1H NMR spectra. The most abundant proteins in urine samples from healthy dogs were uromodulin, albumin and, in entire male dogs, arginine esterase. In urine samples from CKD dogs, the concentrations of uromodulin and albumin were significantly lower and higher, respectively, than in healthy dogs. In addition, these samples were characterised by a more complex protein pattern indicating mixed glomerular (protein bands ≥65 kDa) and tubular (protein bands <65 kDa) proteinuria. Urine spectra acquired by NMR allowed the identification of 86 metabolites in healthy dogs, belonging to 49 different pathways mainly involved in amino acid metabolism, purine and aminoacyl-tRNA biosynthesis or tricarboxylic acid cycle. Seventeen metabolites showed significantly different concentrations when comparing healthy and CKD dogs. In particular, carnosine, trigonelline, and cis-aconitate, might be suggested as putative biomarkers of CKD in dogsinfo:eu-repo/semantics/acceptedVersio

    HMDB: a knowledgebase for the human metabolome

    Get PDF
    The Human Metabolome Database (HMDB, http://www.hmdb.ca) is a richly annotated resource that is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. Since its first release in 2007, the HMDB has been used to facilitate the research for nearly 100 published studies in metabolomics, clinical biochemistry and systems biology. The most recent release of HMDB (version 2.0) has been significantly expanded and enhanced over the previous release (version 1.0). In particular, the number of fully annotated metabolite entries has grown from 2180 to more than 6800 (a 300% increase), while the number of metabolites with biofluid or tissue concentration data has grown by a factor of five (from 883 to 4413). Similarly, the number of purified compounds with reference to NMR, LC-MS and GC-MS spectra has more than doubled (from 380 to more than 790 compounds). In addition to this significant expansion in database size, many new database searching tools and new data content has been added or enhanced. These include better algorithms for spectral searching and matching, more powerful chemical substructure searches, faster text searching software, as well as dedicated pathway searching tools and customized, clickable metabolic maps. Changes to the user-interface have also been implemented to accommodate future expansion and to make database navigation much easier. These improvements should make the HMDB much more useful to a much wider community of users

    Urine metabolome profiling of immune-mediated inflammatory diseases

    Get PDF
    Background: Immune-mediated inflammatory diseases (IMIDs) are a group of complex and prevalent diseases where disease diagnostic and activity monitoring is highly challenging. The determination of the metabolite profiles of biological samples is becoming a powerful approach to identify new biomarkers of clinical utility. In order to identify new metabolite biomarkers of diagnosis and disease activity, we have performed the first large-scale profiling of the urine metabolome of the six most prevalent IMIDs: rheumatoid arthritis, psoriatic arthritis, psoriasis, systemic lupus erythematosus, Crohn?s disease, and ulcerative colitis. Methods: Using nuclear magnetic resonance, we analyzed the urine metabolome in a discovery cohort of 1210 patients and 100 controls. Within each IMID, two patient subgroups were recruited representing extreme disease activity (very high vs. very low). Metabolite association analysis with disease diagnosis and disease activity was performed using multivariate linear regression in order to control for the effects of clinical, epidemiological, or technical variability. After multiple test correction, the most significant metabolite biomarkers were validated in an independent cohort of 1200 patients and 200 controls. Results: In the discovery cohort, we identified 28 significant associations between urine metabolite levels and disease diagnosis and three significant metabolite associations with disease activity (PFDR < 0.05). Using the validation cohort, we validated 26 of the diagnostic associations and all three metabolite associations with disease activity (PFDR < 0.05). Combining all diagnostic biomarkers using multivariate classifiers we obtained a good disease prediction accuracy in all IMIDs and particularly high in inflammatory bowel diseases. Several of the associated metabolites were found to be commonly altered in multiple IMIDs, some of which can be considered as hub biomarkers. The analysis of the metabolic reactions connecting the IMID-associated metabolites showed an overrepresentation of citric acid cycle, phenylalanine, and glycine-serine metabolism pathways. Conclusions: This study shows that urine is a source of biomarkers of clinical utility in IMIDs. We have found that IMIDs show similar metabolic changes, particularly between clinically similar diseases and we have found, for the first time, the presence of hub metabolites. These findings represent an important step in the development of more efficient and less invasive diagnostic and disease monitoring methods in IMIDs
    corecore