4,201 research outputs found
The analysis of time multiplexing systems for partial success
Time division multiplexing system analysis for partial succes
Sex investment ratios in eusocial Hymenoptera support inclusive fitness theory
Inclusive fitness theory predicts that sex investment ratios in eusocial Hymenoptera are a function of the relatedness asymmetry (relative relatedness to females and males) of the individuals controlling sex allocation. In monogynous ants (with one queen per colony), assuming worker control, the theory therefore predicts female-biased sex investment ratios, as found in natural populations. Recently, E.O. Wilson and M.A. Nowak criticized this explanation and presented an alternative hypothesis. The Wilson–Nowak sex ratio hypothesis proposes that, in monogynous ants, there is selection for a 1 : 1 numerical sex ratio to avoid males remaining unmated, which, given queens exceed males in size, results in a female-biased sex investment ratio. The hypothesis also asserts that, contrary to inclusive fitness theory, queens not workers control sex allocation and queen–worker conflict over sex allocation is absent. Here, I argue that the Wilson–Nowak sex ratio hypothesis is flawed because it contradicts Fisher’s sex ratio theory, which shows that selection on sex ratio does not maximize the number of mated offspring and that the sex ratio proposed by the hypothesis is not an equilibrium for the queen. In addition, the hypothesis is not supported by empirical evidence, as it fails to explain ‘split’ (bimodal) sex ratios or data showing queen and worker control and ongoing queen–worker conflict. By contrast, these phenomena match predictions of inclusive fitness theory. Hence, the Wilson–Nowak sex ratio hypothesis fails both as an alternative hypothesis for sex investment ratios in eusocial Hymenoptera and as a critique of inclusive fitness theory
Data Compression System with a Minimum Time Delay Unit-Patent
Minimum time delay unit for conventional time multiplexed data compression channel
Colony and individual life-history responses to temperature in a social insect pollinator
Pollinating insects are of major ecological and commercial importance, yet they may be facing ecological disruption from a changing climate. Despite this threat, few studies have investigated the life-history responses of pollinators to experimentally controlled changes in temperature, which should be especially informative for species with complex life histories such as eusocial insects. This study uses the key pollinator Bombus terrestris, a eusocial bumble bee with an annual colony cycle, to determine how temperature affects life-history traits at both individual and colony levels. In two laboratory experiments, we reared B. terrestris colonies at either 20°C or 25°C, and measured differences in a set of life-history traits including colony longevity, queen longevity, worker longevity, production of workers, production of sexuals (queen and male production) and growth schedule, as well as effects on thermoregulatory behaviours. Higher rearing temperature had a significant positive effect on colony longevity in one of the two experiments but no significant effects on queen or worker longevity. Higher rearing temperature significantly increased colony size but did not affect the timing of peak colony size. It was also associated with significantly higher queen production but had no effect on the production of workers or males or the timing of male production. Higher temperature colonies exhibited significantly more wing-fanning by workers and significantly less wax canopy construction. Hence an increase in rearing temperature of a few degrees increased colony longevity, colony size and queen production. However, individual longevity was not affected and so may have been buffered by changes in costly thermoregulatory behaviours. We conclude that eusocial insects may show complex phenotypic responses to projected temperature increases under climate change, including effects on productivity and reproduction at the colony level. Such effects should be considered when predicting the impact of climate change on the provision of essential pollination services
An Advanced, Three-Dimensional Plotting Library for Astronomy
We present a new, three-dimensional (3D) plotting library with advanced
features, and support for standard and enhanced display devices. The library -
S2PLOT - is written in C and can be used by C, C++ and FORTRAN programs on
GNU/Linux and Apple/OSX systems. S2PLOT draws objects in a 3D (x,y,z) Cartesian
space and the user interactively controls how this space is rendered at run
time. With a PGPLOT inspired interface, S2PLOT provides astronomers with
elegant techniques for displaying and exploring 3D data sets directly from
their program code, and the potential to use stereoscopic and dome display
devices. The S2PLOT architecture supports dynamic geometry and can be used to
plot time-evolving data sets, such as might be produced by simulation codes. In
this paper, we introduce S2PLOT to the astronomical community, describe its
potential applications, and present some example uses of the library.Comment: 12 pages, 10 eps figures (higher resolution versions available from
http://astronomy.swin.edu.au/s2plot/paperfigures). The S2PLOT library is
available for download from http://astronomy.swin.edu.au/s2plo
Observations of Global and Local Infall in NGC 1333
We report ``infall asymmetry'' in the HCO (1--0) and (3--2) lines toward
NGC 1333, extended over , a larger extent than has been
reported be fore, for any star-forming region. The infall asymmetry extends
over a major portion of the star-forming complex, and is not limited to a
single protostar, or to a single dense core, or to a single spectral line. It
seems likely that the infall asymmetry represents inward motions, and that
these motions are physically associated with the complex. Both blue-asymmetric
and red-asymmetric lines are seen, but in both the (3--2) and (1--0) lines of
HCO the vast majority of the asymmetric lines are blue, indicating inward
motions. The (3--2) line, tracing denser gas, has the spectra with the
strongest asymmetry and these spectra are associated with the protostars IRAS
4A and 4B, which most likely indicates a warm central source is affecting the
line profiles. The (3--2) and (1--0) lines usually have the same sense of
asymmetry in common positions, but their profiles differ significantly, and the
(1--0) line appears to trace motions on much larger spatial scales than does
the (3--2) line. Line profile models fit the spectra well, but do not strongly
constrain their parameters. The mass accretion rate of the inward motions is of
order 10 M/yr, similar to the ratio of stellar mass to cluster
age.Comment: 28 pages, 11 figures, 1 colour figur
A MERLIN Observation of PSR B1951+32 and its associated Plerion
In an investigative 16 hour L band observation using the MERLIN radio
interferometric array, we have resolved both the pulsar PSR B1951+32 and
structure within the flat spectral radio continuum region, believed to be the
synchrotron nebula associated with the interaction of the pulsar and its `host'
supernova remnant CTB 80. The extended structure we see, significant at
4.5 , is of dimensions 2.5" 0.75", and suggests a sharp bow
shaped arc of shocked emission, which is correlated with similar structure
observed in lower resolution radio maps and X-ray images. Using this MERLIN
data as a new astrometric reference for other multiwavelength data we can place
the pulsar at one edge of the HST reported optical synchrotron knot, ruling out
previous suggested optical counterparts, and allowing an elementary analysis of
the optical synchrotron emission which appears to trail the pulsar. The latter
is possibly a consequence of pulsar wind replenishment, and we suggest that the
knot is a result of magnetohydrodynamic (MHD) instabilities. These being so, it
suggests a dynamical nature to the optical knot, which will require high
resolution optical observations to confirm.Comment: 12 pages, 2 figures. Accepted for publication in ApJ
Queen control of a key life-history event in a eusocial insect
In eusocial insects, inclusive fitness theory predicts potential queen–worker conflict over the timing of events in colony life history. Whether queens or workers control the timing of these events is poorly understood. In the bumble-bee Bombus terrestris, queens exhibit a ‘switch point’ in which they switch from laying diploid eggs yielding females (workers and new queens) to laying haploid eggs yielding males. By rearing foundress queens whose worker offspring were removed as pupae and sexing their eggs using microsatellite genotyping, we found that queens kept in the complete absence of adult workers still exhibit a switch point. Moreover, the timing of their switch points relative to the start of egg-laying did not differ significantly from that of queens allowed to produce normal colonies. The finding that bumble-bee queens can express the switch point in the absence of workers experimentally demonstrates queen control of a key life-history event in eusocial insects. In addition, we found no evidence that workers affect the timing of the switch point either directly or indirectly via providing cues to queens, suggesting that workers do not fully express their interests in queen–worker conflicts over colony life history
A Catalog of Low-Mass Star-Forming Cores Observed with SHARC-II at 350 microns
We present a catalog of low-mass dense cores observed with the SHARC-II
instrument at 350 microns. Our observations have an effective angular
resolution of 10", approximately 2.5 times higher than observations at the same
wavelength obtained with the Herschel Space Observatory, albeit with lower
sensitivity, especially to extended emission. The catalog includes 81 maps
covering a total of 164 detected sources. For each detected source, we tabulate
basic source properties including position, peak intensity, flux density in
fixed apertures, and radius. We examine the uncertainties in the pointing model
applied to all SHARC-II data and conservatively find that the model corrections
are good to within ~3", approximately 1/3 of the SHARC-II beam. We examine the
differences between two array scan modes and find that the instrument
calibration, beam size, and beam shape are similar between the two modes. We
also show that the same flux densities are measured when sources are observed
in the two different modes, indicating that there are no systematic effects
introduced into our catalog by utilizing two different scan patterns during the
course of taking observations. We find a detection rate of 95% for protostellar
cores but only 45% for starless cores, and demonstrate the existence of a
SHARC-II detection bias against all but the most massive and compact starless
cores. Finally, we discuss the improvements in protostellar classification
enabled by these 350 micron observations.Comment: Accepted by A
Dune formation on the present Mars
We apply a model for sand dunes to calculate formation of dunes on Mars under
the present Martian atmospheric conditions. We find that different dune shapes
as those imaged by Mars Global Surveyor could have been formed by the action of
sand-moving winds occuring on today's Mars. Our calculations show, however,
that Martian dunes could be only formed due to the higher efficiency of Martian
winds in carrying grains into saltation. The model equations are solved to
study saltation transport under different atmospheric conditions valid for
Mars. We obtain an estimate for the wind speed and migration velocity of
barchan dunes at different places on Mars. From comparison with the shape of
bimodal sand dunes, we find an estimate for the timescale of the changes in
Martian wind regimes.Comment: 16 pages, 12 figure
- …
