94 research outputs found

    Noncommutative polynomial maps

    Get PDF
    Accepté pour publication dans "Journal of Algebra and its applications"; 16 pages.Polynomial maps attached to polynomials of an Ore extension are naturally defi ned. In this setting we show the importance of pseudo-linear transformations and give some applications. In particular, factorizations of polynomials in an Ore extension over a fi nite fi eld F_q[t;S ], where S is the Frobenius automorphism, are translated into factorizations in the usual polynomial ring F_q[x]

    Closing the sea surface mixed layer temperature budget from in situ observations alone: Operation Advection during BoBBLE

    Get PDF
    Sea surface temperature (SST) is a fundamental driver of tropical weather systems such as monsoon rainfall and tropical cyclones. However, understanding of the factors that control SST variability is lacking, especially during the monsoons when in situ observations are sparse. Here we use a ground-breaking observational approach to determine the controls on the SST variability in the southern Bay of Bengal. We achieve this through the first full closure of the ocean mixed layer energy budget derived entirely from in situ observations during the Bay of Bengal Boundary Layer Experiment (BoBBLE). Locally measured horizontal advection and entrainment contribute more significantly than expected to SST evolution and thus oceanic variability during the observation period. These processes are poorly resolved by state-of-the-art climate models, which may contribute to poor representation of monsoon rainfall variability. The novel techniques presented here provide a blueprint for future observational experiments to quantify the mixed layer heat budget on longer time scales and to evaluate these processes in models

    Implications of 36Cl exposure ages from Skye, northwest Scotland for the timing of ice stream deglaciation and deglacial ice dynamics

    Get PDF
    The French national AMS facility ASTER (CEREGE, Aix en Provence) is supported by the INSU/CNRS, the ANR through the "Projets thématiques d’excellence" program for the "Equipements d’excellence" ASTER-CEREGE action, IRD and CEA. The authors would like to thank Shasta Marrero for helpful and informative discussion on the CRONUScalc online calculator. DS was supported by a SAGES studentship and fieldwork by funds from the QRA and BSG.Geochronological constraints on the deglaciation of former marine based ice streams provide information on the rates and modes by which marine based ice sheets have responded to external forcing factors such as climate change. This paper presents new 36Cl cosmic ray exposure dating from boulders located on two moraines (Glen Brittle and Loch Scavaig) in southern Skye, northwest Scotland. Ages from the Glen Brittle moraines constrain deglaciation of a major marine terminating ice stream, the Barra-Donegal Ice Stream that drained the former British-Irish Ice Sheet, depending on choice of production method and scaling model this occurred 19.9 ± 1.5–17.6 ± 1.3 ka ago. We compare this timing of deglaciation to existing geochronological data and changes in a variety of potential forcing factors constrained through proxy records and numerical models to determine what deglaciation age is most consistent with existing evidence. Another small section of moraine, the Scavaig moraine, is traced offshore through multibeam swath-bathymetry and interpreted as delimiting a later stillstand/readvance stage following ice stream deglaciation. Additional cosmic ray exposure dating from the onshore portion of this moraine indicate that it was deposited 16.3 ± 1.3–15.2 ± 0.9 ka ago. When calculated using the most up-to-date scaling scheme this time of deposition is, within uncertainty, the same as the timing of a widely identified readvance, the Wester Ross Readvance, observed elsewhere in northwest Scotland. This extends the area over which this readvance has potentially occurred, reinforcing the view that it was climatically forced.PostprintPeer reviewe

    Analysis by x-ray microtomography of a granular packing undergoing compaction

    Full text link
    Several acquisitions of X-ray microtomography have been performed on a beads packing while it compacts under vertical vibrations. An image analysis allows to study the evolution of the packing structure during its progressive densification. In particular, the volume distribution of the pores reveals a large tail, compatible to an exponential law, which slowly reduces as the system gets more compact. This is quite consistent, for large pores, with the free volume theory. These results are also in very good agreement with those obtained by a previous numerical model of granular compaction.Comment: 4 pages, 4 figures. Latex (revtex4). to be published in Phys. Rev.

    Argo data 1999-2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats.

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wong, A. P. S., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S., Roemmich, D., Gilson, J., Johnson, G. C., Martini, K., Murphy, D. J., Scanderbeg, M., Bhaskar, T. V. S. U., Buck, J. J. H., Merceur, F., Carval, T., Maze, G., Cabanes, C., Andre, X., Poffa, N., Yashayaev, I., Barker, P. M., Guinehut, S., Belbeoch, M., Ignaszewski, M., Baringer, M. O., Schmid, C., Lyman, J. M., McTaggart, K. E., Purkey, S. G., Zilberman, N., Alkire, M. B., Swift, D., Owens, W. B., Jayne, S. R., Hersh, C., Robbins, P., West-Mack, D., Bahr, F., Yoshida, S., Sutton, P. J. H., Cancouet, R., Coatanoan, C., Dobbler, D., Juan, A. G., Gourrion, J., Kolodziejczyk, N., Bernard, V., Bourles, B., Claustre, H., D'Ortenzio, F., Le Reste, S., Le Traon, P., Rannou, J., Saout-Grit, C., Speich, S., Thierry, V., Verbrugge, N., Angel-Benavides, I. M., Klein, B., Notarstefano, G., Poulain, P., Velez-Belchi, P., Suga, T., Ando, K., Iwasaska, N., Kobayashi, T., Masuda, S., Oka, E., Sato, K., Nakamura, T., Sato, K., Takatsuki, Y., Yoshida, T., Cowley, R., Lovell, J. L., Oke, P. R., van Wijk, E. M., Carse, F., Donnelly, M., Gould, W. J., Gowers, K., King, B. A., Loch, S. G., Mowat, M., Turton, J., Rama Rao, E. P., Ravichandran, M., Freeland, H. J., Gaboury, I., Gilbert, D., Greenan, B. J. W., Ouellet, M., Ross, T., Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K., Jo, H., Kim, S., & Park, H. Argo data 1999-2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Frontiers in Marine Science, 7, (2020): 700, doi:10.3389/fmars.2020.00700.In the past two decades, the Argo Program has collected, processed, and distributed over two million vertical profiles of temperature and salinity from the upper two kilometers of the global ocean. A similar number of subsurface velocity observations near 1,000 dbar have also been collected. This paper recounts the history of the global Argo Program, from its aspiration arising out of the World Ocean Circulation Experiment, to the development and implementation of its instrumentation and telecommunication systems, and the various technical problems encountered. We describe the Argo data system and its quality control procedures, and the gradual changes in the vertical resolution and spatial coverage of Argo data from 1999 to 2019. The accuracies of the float data have been assessed by comparison with high-quality shipboard measurements, and are concluded to be 0.002°C for temperature, 2.4 dbar for pressure, and 0.01 PSS-78 for salinity, after delayed-mode adjustments. Finally, the challenges faced by the vision of an expanding Argo Program beyond 2020 are discussed.AW, SR, and other scientists at the University of Washington (UW) were supported by the US Argo Program through the NOAA Grant NA15OAR4320063 to the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) at the UW. SW and other scientists at the Woods Hole Oceanographic Institution (WHOI) were supported by the US Argo Program through the NOAA Grant NA19OAR4320074 (CINAR/WHOI Argo). The Scripps Institution of Oceanography's role in Argo was supported by the US Argo Program through the NOAA Grant NA15OAR4320071 (CIMEC). Euro-Argo scientists were supported by the Monitoring the Oceans and Climate Change with Argo (MOCCA) project, under the Grant Agreement EASME/EMFF/2015/1.2.1.1/SI2.709624 for the European Commission

    The Lake CHAd Deep DRILLing project (CHADRILL) - targeting ~ 10 million years of environmental and climate change in Africa

    Get PDF
    At present, Lake Chad ( ~13°0 N, ~14° E) is a shallow freshwater lake located in the Sahel/Sahara region of central northern Africa. The lake is primarily fed by the Chari-Logone river system draining a ~600 000 km2 watershed in tropical Africa. Discharge is strongly controlled by the annual passage of the intertropical convergence zone (ITCZ) and monsoon circulation leading to a peak in rainfall during boreal summer. During recent decades, a large number of studies have been carried out in the Lake Chad Basin (LCB). They have mostly focused on a patchwork of exposed lake sediments and outcrops once inhabited by early hominids. A dataset generated from a 673m long geotechnical borehole drilled in 1973, along with outcrop and seismic reflection studies, reveal several hundred metres of Miocene-Pleistocene lacustrine deposits. CHADRILL aims to recover a sedimentary core spanning the Miocene-Pleistocene sediment succession of Lake Chad through deep drilling. This record will provide significant insights into the modulation of orbitally forced changes in northern African hydroclimate under different climate boundary conditions such as high CO2 and absence of Northern Hemisphere ice sheets. These investigations will also help unravel both the age and the origin of the lake and its current desert surrounding. The LCB is very rich in early hominid fossils (Australopithecus bahrelghazali; Sahelanthropus tchadensis) of Late Miocene age. Thus, retrieving a sediment core from this basin will provide the most continuous climatic and environmental record with which to compare hominid migrations across northern Africa and has major implications for understanding human evolution. Furthermore, due to its dramatic and episodically changing water levels and associated depositional modes, Lake Chad's sediments resemble maybe an analogue for lake systems that were once present on Mars. Consequently, the study of the subsurface biosphere contained in these sediments has the potential to shed light on microbial biodiversity present in this type of depositional environment. We propose to drill a total of ~1800m of poorly to semi-consolidated lacustrine, fluvial, and eolian sediments down to bedrock at a single on-shore site close to the shoreline of present-day Lake Chad. We propose to locate our drilling operations on-shore close to the site where the geotechnical Bol borehole (13°280 N, 14°440 E) was drilled in 1973. This is for two main reasons: (1) nowhere else in the Chad Basin do we have such detailed information about the lithologies to be drilled; and (2) the Bol site is close to the depocentre of the Chad Basin and therefore likely to provide the stratigraphically most continuous sequence
    corecore