1,610 research outputs found

    Useful martingales for stochastic storage processes with L\'{e}vy-type input

    Full text link
    In this paper we generalize the martingale of Kella and Whitt to the setting of L\'{e}vy-type processes and show that the (local) martingales obtained are in fact square integrable martingales which upon dividing by the time index converge to zero a.s. and in L2L^2. The reflected L\'{e}vy-type process is considered as an example.Comment: 15 pages. arXiv admin note: substantial text overlap with arXiv:1112.475

    A bivariate risk model with mutual deficit coverage

    Get PDF
    We consider a bivariate Cramer-Lundberg-type risk reserve process with the special feature that each insurance company agrees to cover the deficit of the other. It is assumed that the capital transfers between the companies are instantaneous and incur a certain proportional cost, and that ruin occurs when neither company can cover the deficit of the other. We study the survival probability as a function of initial capitals and express its bivariate transform through two univariate boundary transforms, where one of the initial capitals is fixed at 0. We identify these boundary transforms in the case when claims arriving at each company form two independent processes. The expressions are in terms of Wiener-Hopf factors associated to two auxiliary compound Poisson processes. The case of non-mutual (reinsurance) agreement is also considered

    Analysis and optimization of vacation and polling models with retrials

    Get PDF
    We study a vacation-type queueing model, and a single-server multi-queue polling model, with the special feature of retrials. Just before the server arrives at a station there is some deterministic glue period. Customers (both new arrivals and retrials) arriving at the station during this glue period will be served during the visit of the server. Customers arriving in any other period leave immediately and will retry after an exponentially distributed time. Our main focus is on queue length analysis, both at embedded time points (beginnings of glue periods, visit periods and switch- or vacation periods) and at arbitrary time points.Comment: Keywords: vacation queue, polling model, retrials Submitted for review to Performance evaluation journal, as an extended version of 'Vacation and polling models with retrials', by Onno Boxma and Jacques Resin

    Queue-length balance equations in multiclass multiserver queues and their generalizations

    Get PDF
    A classical result for the steady-state queue-length distribution of single-class queueing systems is the following: the distribution of the queue length just before an arrival epoch equals the distribution of the queue length just after a departure epoch. The constraint for this result to be valid is that arrivals, and also service completions, with probability one occur individually, i.e., not in batches. We show that it is easy to write down somewhat similar balance equations for {\em multidimensional} queue-length processes for a quite general network of multiclass multiserver queues. We formally derive those balance equations under a general framework. They are called distributional relationships, and are obtained for any external arrival process and state dependent routing as long as certain stationarity conditions are satisfied and external arrivals and service completions do not simultaneously occur. We demonstrate the use of these balance equations, in combination with PASTA, by (i) providing very simple derivations of some known results for polling systems, and (ii) obtaining new results for some queueing systems with priorities. We also extend the distributional relationships for a non-stationary framework
    corecore