3,713 research outputs found
HIPAD - A Hybrid Interior-Point Alternating Direction algorithm for knowledge-based SVM and feature selection
We consider classification tasks in the regime of scarce labeled training
data in high dimensional feature space, where specific expert knowledge is also
available. We propose a new hybrid optimization algorithm that solves the
elastic-net support vector machine (SVM) through an alternating direction
method of multipliers in the first phase, followed by an interior-point method
for the classical SVM in the second phase. Both SVM formulations are adapted to
knowledge incorporation. Our proposed algorithm addresses the challenges of
automatic feature selection, high optimization accuracy, and algorithmic
flexibility for taking advantage of prior knowledge. We demonstrate the
effectiveness and efficiency of our algorithm and compare it with existing
methods on a collection of synthetic and real-world data.Comment: Proceedings of 8th Learning and Intelligent OptimizatioN (LION8)
Conference, 201
Acceleration of generalized hypergeometric functions through precise remainder asymptotics
We express the asymptotics of the remainders of the partial sums {s_n} of the
generalized hypergeometric function q+1_F_q through an inverse power series z^n
n^l \sum_k c_k/n^k, where the exponent l and the asymptotic coefficients {c_k}
may be recursively computed to any desired order from the hypergeometric
parameters and argument. From this we derive a new series acceleration
technique that can be applied to any such function, even with complex
parameters and at the branch point z=1. For moderate parameters (up to
approximately ten) a C implementation at fixed precision is very effective at
computing these functions; for larger parameters an implementation in higher
than machine precision would be needed. Even for larger parameters, however,
our C implementation is able to correctly determine whether or not it has
converged; and when it converges, its estimate of its error is accurate.Comment: 36 pages, 6 figures, LaTeX2e. Fixed sign error in Eq. (2.28), added
several references, added comparison to other methods, and added discussion
of recursion stabilit
Altruism can proliferate through group/kin selection despite high random gene flow
The ways in which natural selection can allow the proliferation of
cooperative behavior have long been seen as a central problem in evolutionary
biology. Most of the literature has focused on interactions between pairs of
individuals and on linear public goods games. This emphasis led to the
conclusion that even modest levels of migration would pose a serious problem to
the spread of altruism in group structured populations. Here we challenge this
conclusion, by analyzing evolution in a framework which allows for complex
group interactions and random migration among groups. We conclude that
contingent forms of strong altruism can spread when rare under realistic group
sizes and levels of migration. Our analysis combines group-centric and
gene-centric perspectives, allows for arbitrary strength of selection, and
leads to extensions of Hamilton's rule for the spread of altruistic alleles,
applicable under broad conditions.Comment: 5 pages, 2 figures. Supplementary material with 50 pages and 26
figure
SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer
Pancreatic cancer has a devastating prognosis, with an overall 5-year survival rate of ~8%, restricted treatment options and characteristic molecular heterogeneity. SerpinB2 expression, particularly in the stromal compartment, is associated with reduced metastasis and prolonged survival in pancreatic ductal adenocarcinoma (PDAC) and our genomic analysis revealed that SERPINB2 is frequently deleted in PDAC. We show that SerpinB2 is required by stromal cells for normal collagen remodelling in vitro, regulating fibroblast interaction and engagement with collagen in the contracting matrix. In a pancreatic cancer allograft model, co-injection of PDAC cancer cells and SerpinB2(-/-) mouse embryonic fibroblasts (MEFs) resulted in increased tumour growth, aberrant remodelling of the extracellular matrix (ECM) and increased local invasion from the primary tumour. These tumours also displayed elevated proteolytic activity of the primary biochemical target of SerpinB2-urokinase plasminogen activator (uPA). In a large cohort of patients with resected PDAC, we show that increasing uPA mRNA expression was significantly associated with poorer survival following pancreatectomy. This study establishes a novel role for SerpinB2 in the stromal compartment in PDAC invasion through regulation of stromal remodelling and highlights the SerpinB2/uPA axis for further investigation as a potential therapeutic target in pancreatic cancer
Effective-Range Expansion of the Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential
The S-wave effective range parameters of the neutron-deuteron (nd) scattering
are derived in the Faddeev formalism, using a nonlocal Gaussian potential based
on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy
eigenphase shift is sufficiently attractive to reproduce predictions by the
AV18 plus Urbana three-nucleon force, yielding the observed value of the
doublet scattering length and the correct differential cross sections below the
deuteron breakup threshold. This conclusion is consistent with the previous
result for the triton binding energy, which is nearly reproduced by fss2
without reinforcing it with the three-nucleon force.Comment: 21 pages, 6 figures and 6 tables, submitted to Prog. Theor. Phy
Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer
Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies
Solitary waves in the Nonlinear Dirac Equation
In the present work, we consider the existence, stability, and dynamics of
solitary waves in the nonlinear Dirac equation. We start by introducing the
Soler model of self-interacting spinors, and discuss its localized waveforms in
one, two, and three spatial dimensions and the equations they satisfy. We
present the associated explicit solutions in one dimension and numerically
obtain their analogues in higher dimensions. The stability is subsequently
discussed from a theoretical perspective and then complemented with numerical
computations. Finally, the dynamics of the solutions is explored and compared
to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger
equation. A few special topics are also explored, including the discrete
variant of the nonlinear Dirac equation and its solitary wave properties, as
well as the PT-symmetric variant of the model
Forces and moments generated by aligner‐type appliances for orthodontic tooth movement: A systematic review and meta‐analysis
The aim of this review was to systematically appraise the evidence on aligner mechanics and forces and moments generated across difference types of aligners. In vitro- laboratory studies for model simulated tooth movement with aligners. Database searches within Medline via Pubmed, Cochrane Central Register of Controlled Trials (CENTRAL), LILACS via BIREME Virtual Health Library. Unpublished literature was also searched in Open Grey, ClinicalTrials.gov (www.clinicaltrials.gov), the National Research Register (www.controlled-trials.com) and Center for Open Science (Open Science Framework), using the terms "aligner" AND "orthodontic". Risk of bias assessment was based on the Cochrane Risk of Bias tool. Random effects meta-analyses were conducted. A total of 447 studies were identified through electronic search and after careful consideration of pre- defined eligibility criteria, 13 deemed eligible for inclusion, while 2 were included in the quantitative synthesis. When palatal tipping of the upper central incisor through PET-G aligners was considered, aligner thickness of 0.5, 0.625 or 0.75 mm was not associated with a significantly different moment to force (M/F) ratio, given a common gingival edge width of 3-4 mm. Aligner thickness does not appear to possess a significant role in forces and moments generated by clear aligners under specific settings, while the most commonly examined tooth movements are tipping and rotation. The findings of this review may be applicable to certain conditions in laboratory settings.
Keywords: aligner; force; meta-analysis; moment; systematic review; tooth movement
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target
111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA
- …
