2,383 research outputs found
Quasi-Equatorial Gravitational Lensing by Spinning Black Holes in the Strong Field Limit
Spherically symmetric black holes produce, by strong field lensing, two
infinite series of relativistic images, formed by light rays winding around the
black hole at distances comparable to the gravitational radius. In this paper,
we address the relevance of the black hole spin for the strong field lensing
phenomenology, focusing on trajectories close to the equatorial plane for
simplicity. In this approximation, we derive a two-dimensional lens equation
and formulae for the position and the magnification of the relativistic images
in the strong field limit. The most outstanding effect is the generation of a
non trivial caustic structure. Caustics drift away from the optical axis and
acquire finite extension. For a high enough black hole spin, depending on the
source extension, we can practically observe only one image rather than two
infinite series of relativistic images. In this regime, additional non
equatorial images may play an important role in the phenomenology.Comment: 13 pages, 9 figures. Improved version with detailed physical
discussio
Strong Gravitational Lensing by Sgr A*
In recent years, there has been increasing recognition of the potential of
the galactic center as a probe of general relativity in the strong field. There
is almost certainly a black hole at Sgr A* in the galactic center, and this
would allow us the opportunity to probe dynamics near the exterior of the black
hole. In the last decade, there has been research into extreme gravitational
lensing in the galactic center. Unlike in most applications of gravitational
lensing, where the bending angle is of the order of several arc seconds, very
large bending angles are possible for light that closely approaches a black
hole. Photons may even loop multiple times around a black hole before reaching
the observer. There have been many proposals to use light's close approach to
the black hole as a probe of the black hole metric. Of particular interest is
the property of light lensed by the S stars orbiting in the galactic center.
This paper will review some of the attempts made to study extreme lensing as
well as extend the analysis of lensing by S stars. In particular, we are
interested in the effect of a Reissner-Nordstrom like 1/r^2 term in the metric
and how this would affect the properties of relativistic images.Comment: 13 pages, 9 figures. Submitted as invited review article for the GR19
issue of CQ
Particle motion and gravitational lensing in the metric of a dilaton black hole in a de Sitter universe
We consider the metric exterior to a charged dilaton black hole in a de
Sitter universe. We study the motion of a test particle in this metric.
Conserved quantities are identified and the Hamilton-Jacobi method is employed
for the solutions of the equations of motion. At large distances from the black
hole the Hubble expansion of the universe modifies the effective potential such
that bound orbits could exist up to an upper limit of the angular momentum per
mass for the orbiting test particle. We then study the phenomenon of strong
field gravitational lensing by these black holes by extending the standard
formalism of strong lensing to the non-asymptotically flat dilaton-de Sitter
metric. Expressions for the various lensing quantities are obtained in terms of
the metric coefficients.Comment: 8 pages, RevTex, 1 eps figures; discussion improved; typos corrected;
references adde
Gravitational lensing by a charged black hole of string theory
We study gravitational lensing by the
Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) charged black hole of
heterotic string theory and obtain the angular position and magnification of
the relativistic images. Modeling the supermassive central object of the galaxy
as a GMGHS black hole, we estimate the numerical values of different
strong-lensing parameters. We find that there is no significant string effect
present in the lensing observables in the strong-gravity scenario.Comment: 6 page
Estimating the parameters of the Sgr A* black hole
The measurement of relativistic effects around the galactic center may allow
in the near future to strongly constrain the parameters of the supermassive
black hole likely present at the galactic center (Sgr A*). As a by-product of
these measurements it would be possible to severely constrain, in addition,
also the parameters of the mass-density distributions of both the innermost
star cluster and the dark matter clump around the galactic center.Comment: Accepted for publication on General Relativity and Gravitation, 2010.
11 Pages, 1 Figur
Non-Gaussian signatures of Tachyacoustic Cosmology
I investigate non-Gaussian signatures in the context of tachyacoustic
cosmology, that is, a noninflationary model with superluminal speed of sound. I
calculate the full non-Gaussian amplitude , its size ,
and corresponding shapes for a red-tilted spectrum of primordial scalar
perturbations. Specifically, for cuscuton-like models I show that , and the shape of its non-Gaussian amplitude peaks for
both equilateral and local configurations, the latter being dominant. These
results, albeit similar, are quantitatively distinct from the corresponding
ones obtained by Magueijo {\it{et. al}} in the context of superluminal bimetric
models.Comment: Some comments and references added. Matches the version published in
JCA
Gravitational Lensing by Black Holes
We review the theoretical aspects of gravitational lensing by black holes,
and discuss the perspectives for realistic observations. We will first treat
lensing by spherically symmetric black holes, in which the formation of
infinite sequences of higher order images emerges in the clearest way. We will
then consider the effects of the spin of the black hole, with the formation of
giant higher order caustics and multiple images. Finally, we will consider the
perspectives for observations of black hole lensing, from the detection of
secondary images of stellar sources and spots on the accretion disk to the
interpretation of iron K-lines and direct imaging of the shadow of the black
hole.Comment: Invited article for the GRG special issue on lensing (P. Jetzer, Y.
Mellier and V. Perlick Eds.). 31 pages, 12 figure
Potential of remote sensing and open street data for flood mapping in poorly gauged areas: a case study in Gonaives, Haiti
The Hispaniola Island, in the Caribbean tropical zone, is prone to extreme flood events. Floods are caused by tropical springs and hurricanes and may lead to human losses, economical damages, and spreading of waterborne diseases. Flood studies based upon hydrological and hydraulic modelling are hampered by almost complete lack of hydro-meteorological data. Thenceforth, and given the cost and complexity in the organization of field measurement campaigns, the need for exploitation of remote sensing data, and open source data bases. We present here a feasibility study to explore the potential of (i) high-resolution of digital elevation models (DEMs) from remote imagery and (ii) remotely sensed precipitation data, to feed hydrological flow routing and hydraulic flood modelling, applied to the case study of river La Quinte closed to Gonaives (585 km2), Haiti. We studied one recent flood episode, namely hurricane Ike in 2008, when flood maps from remote sensing were available for validation. The atmospheric input given by hourly rainfall was taken from downscaled Tropical Rainfall Measuring Mission (TRMM) daily estimates, and subsequently fed to a semi-distributed DEM-based hydrological model, providing an hourly flood hydrograph. Then, flood modelling using Hydrologic Engineering Center River Analysis System (HEC-RAS 1D, one-dimensional model for unsteady open channel flow) was carried out under different scenarios of available digital elevation models. The DEMs were generated using optical remote sensing satellite WorldView-1 and Shuttle Radar Topography Mission (SRTM), combined with information from an open source database (OpenStreetMap). Observed flood extent and land use have been extracted using Système Pour l’Observation de la Terre-4 (SPOT-4) imagery. The hydraulic model was tuned for floodplain friction against the observed flooded area. We compared different scenarios of flood simulation and the predictive power given by model tuning. Our study provides acceptable results in depicting flooded areas, especially considering the tremendous lack of ground data, and shows the potential of hydrological modelling approach fed by remote sensing information in Haiti, and in similarly data-scarce areas. Our approach may be useful to provide depiction of flooded areas for the purpose of (i) flood design for urban planning under a frequency-driven approach and (ii) forecasting of flooded areas for warning procedures, pending availability of weather forecast with proper lead time
Trapped surfaces, horizons and exact solutions in higher dimensions
A very simple criterion to ascertain if (D-2)-surfaces are trapped in
arbitrary D-dimensional Lorentzian manifolds is given. The result is purely
geometric, independent of the particular gravitational theory, of any field
equations or of any other conditions. Many physical applications arise, a few
shown here: a definition of general horizon, which reduces to the standard one
in black holes/rings and other known cases; the classification of solutions
with a (D-2)-dimensional abelian group of motions and the invariance of the
trapping under simple dimensional reductions of the
Kaluza-Klein/string/M-theory type. Finally, a stronger result involving closed
trapped surfaces is presented. It provides in particular a simple sufficient
condition for their absence.Comment: 7 pages, no figures, final version to appear in Class. Quantum Gra
- …
