1,462 research outputs found
Multi-electron SEFs for nuclear reactions involved in advanced stages of stellar evolution
Multi-electron screening effects encountered in laboratory astrophysical
reactions are investigated by considering the reactants Thomas-Fermi atoms. By
means of that model, previous studies are extended to derive the corresponding
screening enhancement factor (SEF), so that it takes into account ionization,
thermal, exchange and relativistic effects. The present study, by imposing a
very satisfactory constraint on the possible values of the screening energies
and the respective SEFs, corrects the current (and the future) experimental
values of the astrophysical factors associated with nuclear reactions involved
in advanced stages of stellar evolution.Comment: 13 RevTex pages+6 ps figures; Accepted for publication in Nuclear
Physics
Screening of Nuclear Reactions in the Sun and Solar Neutrinos
We quantitatively determine the effect and the uncertainty on solar neutrino
production arising from the screening process. We present predictions for the
solar neutrino fluxes and signals obtained with different screening models
available in the literature and by using our stellar evolution code. We explain
these numerical results in terms of simple laws relating the screening factors
with the neutrino fluxes. Futhermore we explore a wider range of models for
screening, obtained from the Mitler model by introducing and varying two
phenomenological parameters, taking into account effects not included in the
Mitler prescription. Screening implies, with respect to a no-screening case, a
central temperat reduction of 0.5%, a 2% (8%) increase of Beryllium
(Boron)-neutrino flux and a 2% (12%) increase of the Gallium (Chlorine) signal.
We also find that uncertainties due to the screening effect ar at the level of
1% for the predicted Beryllium-neutrino flux and Gallium signal, not exceeding
3% for the Boron-neutrino flux and the Chlorine signal.Comment: postscript file 11 pages + 4 figures compressed and uuencoded we have
replaced the previous paper with a uuencoded file (the text is the same) for
any problem please write to [email protected]
Abstract basins of attraction
Abstract basins appear naturally in different areas of several complex
variables. In this survey we want to describe three different topics in which
they play an important role, leading to interesting open problems
Observation of Long-Lived Muonic Hydrogen in the 2S State
The kinetic energy distribution of ground state muonic hydrogen atoms
mu-p(1S) is determined from time-of-flight spectra measured at 4, 16, and 64
hPa H2 room-temperature gas. A 0.9 keV-component is discovered and attributed
to radiationless deexcitation of long-lived mu-p(2S) atoms in collisions with
H2 molecules. The analysis reveals a relative population of about 1%, and a
pressure-dependent lifetime (e.g. (30.4 +21.4 -9.7) ns at 64 hPa) of the
long-lived mu-p(2S) population, equivalent to a 2S-quench rate in mu-p(2S) + H2
collisions of (4.4 +2.1 -1.8) 10^11 s^-1 at liquid hydrogen density.Comment: 4 pages, 2 figures, accepted for publication in Physical Review
Letter
Differential cross sections for muonic atom scattering from hydrogenic molecules
The differential cross sections for low-energy muonic hydrogen atom
scattering from hydrogenic molecules are directly expressed by the
corresponding amplitudes for muonic atom scattering from hydrogen-isotope
nuclei. The energy and angular dependence of these three-body amplitudes is
thus taken naturally into account in scattering from molecules, without
involving any pseudopotentials. Effects of the internal motion of nuclei inside
the target molecules are included for every initial rotational-vibrational
state. These effects are very significant as the considered three-body
amplitudes often vary strongly within the energy interval eV.
The differential cross sections, calculated using the presented method, have
been successfully used for planning and interpreting many experiments in
low-energy muon physics. Studies of nuclear capture in and the
measurement of the Lamb shift in atoms created in H gaseous targets
are recent examples.Comment: 21 pages, 13 figures, submitted to Phys. Rev.
Atomic effects in astrophysical nuclear reactions
Two models are presented for the description of the electron screening
effects that appear in laboratory nuclear reactions at astrophysical energies.
The two-electron screening energy of the first model agrees very well with the
recent LUNA experimental result for the break-up reaction , which so far defies all available theoretical models.
Moreover, multi-electron effects that enhance laboratory reactions of the CNO
cycle and other advanced nuclear burning stages, are also studied by means of
the Thomas-Fermi model, deriving analytical formulae that establish a lower and
upper limit for the associated screening energy. The results of the second
model, which show a very satisfactory compatibility with the adiabatic
approximation ones, are expected to be particularly useful in future
experiments for a more accurate determination of the CNO astrophysical factors.Comment: 14 RevTex pages + 2 ps (revised) figures. Phys.Rev.C (in production
On the realization of Symmetries in Quantum Mechanics
The aim of this paper is to give a simple, geometric proof of Wigner's
theorem on the realization of symmetries in quantum mechanics that clarifies
its relation to projective geometry. Although several proofs exist already, it
seems that the relevance of Wigner's theorem is not fully appreciated in
general. It is Wigner's theorem which allows the use of linear realizations of
symmetries and therefore guarantees that, in the end, quantum theory stays a
linear theory. In the present paper, we take a strictly geometrical point of
view in order to prove this theorem. It becomes apparent that Wigner's theorem
is nothing else but a corollary of the fundamental theorem of projective
geometry. In this sense, the proof presented here is simple, transparent and
therefore accessible even to elementary treatments in quantum mechanics.Comment: 8 page
Two-Loop Effects and Current Status of the 4He+ Lamb Shift
We report on recent progress in the treatment of two-loop binding corrections
to the Lamb shift, with a special emphasis on S and P states. We use these and
other results in order to infer an updated theoretical value of the Lamb shift
in 4He+.Comment: 11 pages, nrc1 style; paper presented at PSAS (2006), Venic
Muonic hydrogen cascade time and lifetime of the short-lived state
Metastable muonic-hydrogen atoms undergo collisional -quenching,
with rates which depend strongly on whether the kinetic energy is above
or below the energy threshold. Above threshold, collisional
excitation followed by fast radiative
deexcitation is allowed. The corresponding short-lived component
was measured at 0.6 hPa room temperature gas pressure, with
lifetime ns (i.e.,
at liquid-hydrogen density) and population
% (per atom). In
addition, a value of the cascade time, ns, was found.Comment: 4 pages, 3 figure
- …
