15 research outputs found

    Mechanics of lung ventilation in a post-metamorphic salamander, Ambystoma Tigrinum

    Full text link
    The mechanics of lung ventilation in frogs and aquatic salamanders has been well characterized, whereas lung ventilation in terrestrial-phase (post-metamorphic) salamanders has received little attention. We used electromyography (EMG), X-ray videography, standard videography and buccal and body cavity pressure measurements to characterize the ventilation mechanics of adult (post-metamorphic) tiger salamanders (Ambystoma tigrinum). Three results emerged: (i) under terrestrial conditions or when floating at the surface of the water, adult A. tigrinum breathed through their nares using a two-stroke buccal pump; (ii) in addition to this narial two-stroke pump, adult tiger salamanders also gulped air in through their mouths using a modified two-stroke buccal pump when in an aquatic environment; and (iii) exhalation in adult tiger salamanders is active during aquatic gulping breaths, whereas exhalation appears to be passive during terrestrial breathing at rest. Active exhalation in aquatic breaths is indicated by an increase in body cavity pressure during exhalation and associated EMG activity in the lateral hypaxial musculature, particularly the M. transversus abdominis. In terrestrial breathing, no EMG activity in the lateral hypaxial muscles is generally present, and body cavity pressure decreases during exhalation. In aquatic breaths, tidal volume is larger than in terrestrial breaths, and breathing frequency is much lower (approximately 1 breath 10 min(−)(1)versus 4–6 breaths min(−)(1)). The use of hypaxial muscles to power active exhalation in the aquatic environment may result from the need for more complete exhalation and larger tidal volumes when breathing infrequently. This hypothesis is supported by previous findings that terrestrial frogs ventilate their lungs with small tidal volumes and exhale passively, whereas aquatic frogs and salamanders use large tidal volumes and and exhale actively.</jats:p

    Multi-view Active Appearance Models for the X-Ray Based Analysis of Avian Bipedal Locomotion

    No full text
    Abstract. Many fields of research in biology, motion science and robotics depend on the understanding of animal locomotion. Therefore, numerous experiments are performed using high-speed biplanar x-ray acquisition systems which record sequences of walking animals. Until now, the evalu-ation of these sequences is a very time-consuming task, as human experts have to manually annotate anatomical landmarks in the images. There-fore, an automation of this task at a minimum level of user interaction is worthwhile. However, many difficulties in the data—such as x-ray occlu-sions or anatomical ambiguities—drastically complicate this problem and require the use of global models. Active Appearance Models (AAMs) are known to be capable of dealing with occlusions, but have problems with ambiguities. We therefore analyze the application of multi-view AAMs in the scenario stated above and show that they can effectively han-dle uncertainties which can not be dealt with using single-view models. Furthermore, preliminary studies on the tracking performance of huma

    Musculoskeletal modelling of the Nile crocodile ( Crocodylus niloticus

    No full text
    We developed a three‐dimensional, computational biomechanical model of a juvenile Nile crocodile (Crocodylus niloticus) pelvis and hindlimb, composed of 47 pelvic limb muscles, to investigate muscle function. We tested whether crocodiles, which are known to use a variety of limb postures during movement, use limb orientations (joint angles) that optimise the moment arms (leverages) or moment‐generating capacities of their muscles during different limb postures ranging from a high walk to a sprawling motion. We also describe the three‐dimensional (3D) kinematics of the crocodylian hindlimb during terrestrial locomotion across an instrumented walkway and a treadmill captured via X‐ray Reconstruction of Moving Morphology (biplanar fluoroscopy; ‘XROMM’). We reconstructed the 3D positions and orientations of each of the hindlimb bones and used dissection data for muscle lines of action to reconstruct a focal, subject‐specific 3D musculoskeletal model. Motion data for different styles of walking (a high, crouched, bended and two types of sprawling motion) were fed into the 3D model to identify whether any joints adopted near‐optimal poses for leverage across each of the behaviours. We found that (1) the hip adductors and knee extensors had their largest leverages during sprawling postures and (2) more erect postures typically involved greater peak moment arms about the hip (flexion‐extension), knee (flexion) and metatarsophalangeal (flexion) joints. The results did not fully support the hypothesis that optimal poses are present during different locomotory behaviours because the peak capacities were not always reached around mid‐stance phase. Furthermore, we obtained few clear trends for isometric moment‐generating capacities. Therefore, perhaps peak muscular leverage in Nile crocodiles is instead reached either in early/late stance or possibly during swing phase or other locomotory behaviours that were not studied here, such as non‐terrestrial movement. Alternatively, our findings could reflect a trade‐off between having to execute different postures, meaning that hindlimb muscle leverage is not optimised for any singular posture or behaviour. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in extant crocodiles which can form a basis for investigating muscle function in extinct archosaurs
    corecore