4,766 research outputs found

    Multi-layered Spectral Formation in SNe Ia Around Maximum Light

    Get PDF
    We use the radiative transfer code PHOENIX to study the line formation of the wavelength region 5000-7000 Angstroms. This is the region where the SNe Ia defining Si II feature occurs. This region is important since the ratio of the two nearby silicon lines has been shown to correlate with the absolute blue magnitude. We use a grid of LTE synthetic spectral models to investigate the formation of line features in the spectra of SNe Ia. By isolating the main contributors to the spectral formation we show that the ions that drive the spectral ratio are Fe III, Fe II, Si II, and S II. While the first two strongly dominate the flux transfer, the latter two form in the same physical region inside of the supernova. We also show that the naive blackbody that one would derive from a fit to the observed spectrum is far different than the true underlying continuum.Comment: 35 pages, 15 figures, ApJ (2008) 684 in pres

    Adaptive learning, endogenous inattention, and changes in monetary policy

    Get PDF
    This paper develops an adaptive learning formulation of an extension to the Ball, Mankiw, and Reis (2005) sticky information model that incorporates endogenous inattention. We show that, following an exogenous increase in the policymaker’s preferences for price vs. output stability, the learning process can converge to a new equilibrium in which both output and price volatility are lower.Monetary policy ; Information theory

    SN 2005hj: Evidence for Two Classes of Normal-Bright SNe Ia and Implications for Cosmology

    Get PDF
    HET Optical spectra covering the evolution from about 6 days before to about 5 weeks after maximum light and the ROTSE-IIIb unfiltered light curve of the "Branch-normal" Type Ia Supernova SN 2005hj are presented. The host galaxy shows HII region lines at redshift of z=0.0574, which puts the peak unfiltered absolute magnitude at a somewhat over-luminous -19.6. The spectra show weak and narrow SiII lines, and for a period of at least 10 days beginning around maximum light these profiles do not change in width or depth and they indicate a constant expansion velocity of ~10,600 km/s. We analyzed the observations based on detailed radiation dynamical models in the literature. Whereas delayed detonation and deflagration models have been used to explain the majority of SNe Ia, they do not predict a long velocity plateau in the SiII minimum with an unvarying line profile. Pulsating delayed detonations and merger scenarios form shell-like density structures with properties mostly related to the mass of the shell, M_shell, and we discuss how these models may explain the observed SiII line evolution; however, these models are based on spherical calculations and other possibilities may exist. SN 2005hj is consistent with respect to the onset, duration, and velocity of the plateau, the peak luminosity and, within the uncertainties, with the intrinsic colors for models with M_shell=0.2 M_sun. Our analysis suggests a distinct class of events hidden within the Branch-normal SNe Ia. If the predicted relations between observables are confirmed, they may provide a way to separate these two groups. We discuss the implications of two distinct progenitor classes on cosmological studies employing SNe Ia, including possible differences in the peak luminosity to light curve width relation.Comment: ApJ accepted, 31 page

    Automated restructuring of an electronic newspaper

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (leaves 33-34).by Douglas B. Koen.S.B

    Lower limits on the Hubble Constant from models of Type Ia Supernovae

    Full text link
    By coupling observations of type Ia supernovae with results obtained from the best available numerical models we constrain the Hubble constant, independently of any external calibrators. We find an absolute lower limit of Ho > 50 km/s/Mpc. In addition, we construct a Hubble diagram with UVOIR light curves of 12 type Ia supernovae located in the Hubble flow, and when adopting the most likely values (obtained from 1-D and 3-D deflagration simulations) of the amount of (56)Ni produced in a typical event, we find values of Ho \geq 66±\pm8 and \geq 78±\pm9 km/s/Mpc, respectively. Our result may be difficult to reconcile with recent discussions in the literature as it seems that an Einstein-de Sitter universe requires Ho \simeq 46 km/s/Mpc in order to fit the temperature power spectrum of the cosmic microwave background and maintain the age constraints of the oldest stars.Comment: 11 pages, 3 figures; Accepted for publication in A&

    Modeling the radial abundance distribution of the transition galaxy ngc 1313

    Get PDF
    NGC 1313 is the most massive disk galaxy showing a flat radial abundance distribution in its interstellar gas, a behavior generally observed in magellanic and irregular galaxies. We have attempted to reproduce this flat abundance distribution using a multiphase chemical evolution model, which has been previously used sucessfully to depict other spiral galaxies along the Hubble morphological sequence. We found that it is not possible to reproduce the flat radial abundance distribution in NGC 1313, and at the same time, be consistent with observed radial distributions of other key parameters such the surface gas density and star formation profiles. We conclude that a more complicated galactic evolution model including radial flows, and possibly mass loss due to supernova explosions and winds, is necessary to explain the apparent chemical uniformity of the disk of NGC 1313Comment: 14 paginas, 4 figures, to be published in ApJ, apri

    Optical Response for the d-density wave model

    Full text link
    We have calculated the optical conductivity and the Raman response for the d-density wave model, proposed as a possible explanation for the pseudogap seen in high Tc cuprates. The total optical spectral weight remains approximately constant on opening of the pseudogap for fixed temperature. This occurs because there is a transfer of weight from the Drude peak to interband transitions across the pseudogap. The interband peak in the optical conductivity is prominent but becomes progressively reduced with increasing temperature, with impurity scattering, which distributes it over a larger energy range, and with ineleastic scattering which can also shift its position, making it difficult to have a direct determination of the value of the pseudogap. Corresponding structure is seen in the optical scattering rate, but not necessarily at the same energies as in the conductivity.Comment: 14 pages, 15 figures, final revised version published in PR

    Analytic Inversion of Emission Lines of Arbitrary Optical Depth for the Structure of Supernova Ejecta

    Get PDF
    We derive a method for inverting emission line profiles formed in supernova ejecta. The derivation assumes spherical symmetry and homologous expansion (i.e., v(r)rv(r) \propto r), is analytic, and even takes account of occultation by a pseudo-photosphere. Previous inversion methods have been developed which are restricted to optically thin lines, but the particular case of homologous expansion permits an analytic result for lines of {\it arbitrary} optical depth. In fact, we show that the quantity that is generically retrieved is the run of line intensity IλI_\lambda with radius in the ejecta. This result is quite general, and so could be applied to resonance lines, recombination lines, etc. As a specific example, we show how to derive the run of (Sobolev) optical depth τλ\tau_\lambda with radius in the case of a pure resonance scattering emission line.Comment: 6 pages, no figures, to appear in Astrophysical Journal Letters, requires aaspp4.sty to late
    corecore