6,265 research outputs found

    Supernova Resonance--scattering Line Profiles in the Absence of a Photosphere

    Get PDF
    In supernova spectroscopy relatively little attention has been given to the properties of optically thick spectral lines in epochs following the photosphere's recession. Most treatments and analyses of post-photospheric optical spectra of supernovae assume that forbidden-line emission comprises most if not all spectral features. However, evidence exists which suggests that some spectra exhibit line profiles formed via optically thick resonance-scattering even months or years after the supernova explosion. To explore this possibility we present a geometrical approach to supernova spectrum formation based on the "Elementary Supernova" model, wherein we investigate the characteristics of resonance-scattering in optically thick lines while replacing the photosphere with a transparent central core emitting non-blackbody continuum radiation, akin to the optical continuum provided by decaying 56Co formed during the explosion. We develop the mathematical framework necessary for solving the radiative transfer equation under these conditions, and calculate spectra for both isolated and blended lines. Our comparisons with analogous results from the Elementary Supernova code SYNOW reveal several marked differences in line formation. Most notably, resonance lines in these conditions form P Cygni-like profiles, but the emission peaks and absorption troughs shift redward and blueward, respectively, from the line's rest wavelength by a significant amount, despite the spherically symmetric distribution of the line optical depth in the ejecta. These properties and others that we find in this work could lead to misidentification of lines or misattribution of properties of line-forming material at post-photospheric times in supernova optical spectra.Comment: 37 pages, 24 figures; accepted for publication in ApJ Supplement Serie

    A study of ignition phenomena of bulk metals by radiant heating

    Get PDF
    Early research on combustion of metals was motivated by the knowledge of the large heat release and corresponding high temperatures associated with metal-oxygen reactions. The advent of space flight brought about an increased interest in the ignition and combustion of metallic particles as additives in solid rocket propellants. More recently, attention has been given to the flammability properties of bulk, structural metals due to the number of accidental explosions of metal components in high-pressure oxygen systems. The following work represents a preliminary study that is part of a broader research effort aimed at providing further insight into the phenomena of bulk metal combustion by looking at the effects of gravity on the ignition behavior of metals. The scope of this preliminary experimental study includes the use of a non-coherent, continuous radiation ignition source, the measurement of temperature profiles of a variety of metals and a qualitative observation of the ignition phenomena at normal gravity. The specific objectives of the investigation include: (1) a feasibility study of the use of a continuous radiation source for metal ignition; (2) testing and characterization of the ignition behavior of a variety of metals; and (3) building a preliminary experimental database on ignition of metals under normal gravity conditions

    Nickel Mixing in the Outer Layers of SN 1987A

    Full text link
    Supernova 1987A remains the most well-observed and well-studied supernova to date. Observations produced excellent broad-band photometric and spectroscopic coverage over a wide wavelength range at all epochs. Here, we focus on the very early spectroscopic observations. Only recently have numerical models been of sufficient detail to accurately explain the observed spectra. In SN 1987A, good agreement has been found between observed and synthetic spectra for day one, but by day four, the predicted Balmer lines become much weaker than the observed lines. We present the results of work based on a radiation-hydrodynamic model by Blinnikov and collaborators. Synthetic non-LTE spectra generated from this model by the general radiation transfer code PHOENIX strongly support the theory that significant mixing of nickel into the outer envelope is required to maintain strong Balmer lines. Preliminary results suggest a lower limit to the average nickel mass of 1.0 \times 10^{-5} solar masses is required above 5000 \kmps by day four. PHOENIX models thus have the potential to be a sensitive probe for nickel mixing in the outer layers of a supernova.Comment: 16 pages, 7 figures, ApJ, v556 2001 (in press

    Spectral Consequences of Deviation from Spherical Composition Symmetry in Type Ia Supernovae

    Full text link
    We investigate the prospects for constraining the maximum scale of clumping in composition that is consistent with observed Type Ia supernova flux spectra. Synthetic spectra generated without purely spherical composition symmetry indicate that gross asymmetries make prominent changes to absorption features. Motivated by this, we consider the case of a single unblended line forming in an atmosphere with perturbations of different scales and spatial distributions. Perturbations of about 1% of the area of the photodisk simply weaken the absorption feature by the same amount independent of the line of sight. Conversely, perturbations of about 10% of the area of the photodisk introduce variation in the absorption depth which does depend on the line of sight. Thus, 1% photodisk area perturbations may be consistent with observed profile homogeneity but 10% photodisk area perturbations can not. Based on this, we suggest that the absence of significant variation in the depths of Si II 6355 absorption features in normal Type Ia spectra near maximum light indicates that any composition perturbations in these events are quite small. This also constrains future three-dimensional explosion models to produce ejecta profiles with only small scale inhomogeneities.Comment: 11 pages, 6 figure

    Applications of Phase-Based Motion Processing

    Get PDF
    Image pyramids provide useful information in determining structural response at low cost using commercially available cameras. The current effort applies previous work on the complex steerable pyramid to analyze and identify imperceptible linear motions in video. Instead of implicitly computing motion spectra through phase analysis of the complex steerable pyramid and magnifying the associated motions, instead present a visual technique and the necessary software to display the phase changes of high frequency signals within video. The present technique quickly identifies regions of largest motion within a video with a single phase visualization and without the artifacts of motion magnification, but requires use of the computationally intensive Fourier transform. While Riesz pyramids present an alternative to the computationally intensive complex steerable pyramid for motion magnification, the Riesz formulation contains significant noise, and motion magnification still presents large amounts of data that cannot be quickly assessed by the human eye. Thus, user-friendly software is presented for quickly identifying structural response through optical flow and phase visualization in both Python and MATLAB

    Circumpolar Diversity and Geographic Differentiation of mtDNA in the Critically Endangered Antarctic Blue Whale (Balaenoptera musculus intermedia)

    Get PDF
    To the best of our knowledge, one or more authors of this paper were federal employees when contributing to this work.\ud This is the publisher’s final pdf. The published article is copyrighted by the Public Library of Science and can be found at: http://www.plosone.org/home.action.The Antarctic blue whale (Balaenoptera musculus intermedia) was hunted to near extinction between 1904 and 1972, declining from an estimated initial abundance of more than 250,000 to fewer than 400. Here, we describe mtDNA control region diversity and geographic differentiation in the surviving population of the Antarctic blue whale, using 218 biopsy samples collected under the auspices of the International Whaling Commission (IWC) during research cruises from 1990-2009. Microsatellite genotypes and mtDNA sequences identified 166 individuals among the 218 samples and documented movement of a small number of individuals, including a female that traveled at least 6,650 km or 131 degrees longitude over four years. mtDNA sequences from the 166 individuals were aligned with published sequences from 17 additional individuals, resolving 52 unique haplotypes from a consensus length of 410 bp. From this minimum census, a rarefaction analysis predicted that only 72 haplotypes (95% CL, 64, 86) have survived in the contemporary population of Antarctic blue whales. However, haplotype diversity was relatively high (0.968 +/- 0.004), perhaps as a result of the longevity of blue whales and the relatively recent timing of the bottleneck. Despite the potential for circumpolar dispersal, we found significant differentiation in mtDNA diversity (F-ST = 0.032, p<0.005) and microsatellite alleles (F-ST = 0.005, p<0.05) among the six Antarctic Areas historically used by the IWC for management of blue whales

    The Probable Detection of SN 1923A: The Oldest Radio Supernova?

    Full text link
    Based upon the results of VLA observations, we report the detection of two unresolved radio sources that are coincident with the reported optical position of SN 1923A in M83. For the source closest to the SN position, the flux density was determined to be 0.30 +/- 0.05 mJy at 20 cm and 0.093 +/- 0.028 mJy at 6 cm. The flux density of the second nearby source was determined to be 0.29 +/- 0.05 at 20 cm and 0.13 +/- 0.028 at 6 cm. Both sources are non-thermal with spectral indices of alpha = -1.0 +/- 0.30 and -0.69 +/- 0.24, respectively. SN 1923A has been designated as a Type II-P. No Type II-P (other than SN 1987A) has been detected previously in the radio. The radio emission from both sources appears to be fading with time. At an age of approximately 68 years when we observed it, this would be the oldest radio supernova (of known age) yet detected
    corecore