1,005 research outputs found
Chloride concentrations in Lake Tanganyika: an indicator of the hydrological budget?
International audienceOn a historical time scale, this paper investigates the effect of hydroclimatic variations on the surface water salinity of Lake Tanganyika, the largest African lake and an open freshwater reservoir. Through annual water and chemical budgets, based on original and bibliographic data, a tracer of the water regime is proposed. Chloride, an inert and conservative element, seems to be the best candidate although its contribution to salinity is small; its use as a tracer of the water regime is validated on seasonal and historical time scales. Seasonally, a monthly water and chloride budget, constructed for an average year has been compared with data acquired in 1973. On a historical time scale, bibliographic data of chloride concentrations, compiled since 1939 have been compared with the level variation curve. The relation between lake level and surface water chloride concentration is significant on both time scales. Hence, the surface salinity/chlorinity of this freshwater lake is sensitive to hydroclimatic variations even if level variations are very limited in comparison with its great depth. This sensitivity is due mainly to the permanent thermo-haline stratification of the lake. Keywords: climate, water budget, hydrochemical budget, Lake Tanganyika, limnology, salinit
Sensibilité à la pollution métallique de deux grands lacs africains (Tanganyika et Malawi)
Les lacs Tanganyika et Malawi sont, de par leur volume, les deux plus grands lacs africains. Ces réservoirs semblent pour l'instant épargnés par la pollution en éléments en trace. Il est toutefois crucial, en raison de leurs caractéristiques hydrologiques, de poser la question du temps de réponse de ces systèmes à une pollution chronique potentielle véhiculée par les affluents. Cet article simule ainsi cette réponse dans la fraction dissoute suite à l'introduction pendant 50 ans de polluant par tous les affluents. Cette démarche s'appuie sur un modèle hydrologique intégrant les trois compartiments des colonnes d'eau (épi-, méta- et hypolimnion) et sur la prise en compte de la réactivité des éléments dissous dans ces compartiments par l'intermédiaire du taux de rétention élémentaire. Ainsi quatre types d'éléments sont considérés, (i) le type Cl, non réactif, (ii) le type Si, réactif-nutritif, (iii) le type Mn et (iv) le type V tous deux réactifs sensibles aux conditions d'oxydo-réduction. La réactivité de l'élément, l'efficacité du mélange vertical ainsi que la position de l'oxycline dans la colonne d'eau conditionnent l'amplitude et la cinétique de réponse des systèmes ainsi que le temps de retour à la situation initiale après l'arrêt des apports polluants. Ces caractéristiques propres à l'élément et au lac influent sur le risque potentiel encouru par l'écosystème et l'homme. Ainsi la pollution affecte principalement les eaux de surface (types Cl et V), les réseaux trophiques (type Si), les eaux profondes (types Si et Mn) et le compartiment sédimentaire (types Mn et V).Lakes Tanganyika and Malawi are the largest African lakes as measured by volume. They constitute essential water and protein resources for the surrounding populations. These aquatic systems have become stressed due to high human population density, growth and associated activities. While eutrophication was apparent locally and organic pollutants were detected in fish and water, concentrations of several dissolved trace elements of potential concern corresponded to uncontaminated systems. However, due to their hydrological features, it was important to characterise the lake response time to chronic contamination loaded by the tributaries. This paper presents two simulations of this response, in the dissolved fraction, following 50 years of pollutant input by the tributaries. The first simulation corresponded to an annual pollutant input that was the same for both lakes, resulting in mean river input concentrations of 5.0 U L-1 and 3.7 U L 1 (where U is a weight or molar unit), respectively, for lakes Tanganyika and the Malawi. The second simulation corresponded to an annual input proportional to the lake volume, with mean river input concentrations of 5.0 U L 1 and 1.5 U L 1, respectively, for lakes Tanganyika and the Malawi. The polluted input was loaded by the dissolved fraction with the exception of Mn-type elements, which were carried by the particulate fraction. This approach was based on an annual hydrological model of three water column compartments (epi-, meta- and hypolimnion) of these meromictic lakes. In addition, the reactivity of dissolved elements in the water column was taken into consideration. The reactivity was characterised by the elemental retention rate that quantifies dissolved-particulate interactions linked to biological and physico-chemical processes. The reactivity of trace elements was assessed through their concentration distribution profile in the water column. Four element types were considered: the non-reactive elements characterised by homogenous concentrations in the water column (Cl-like); the micronutrient-type elements (Si-like) characterised by a strong positive concentration gradient below the thermocline; redox-sensitive elements (Mn-like) characterised by a strong positive concentration gradient below the oxycline and other redox-sensitive elements (V-like) characterised by a strong negative concentration gradient below the oxycline. Trace elements (F, Al, Fe, Mn, V, Ba, Sr, Mo, Cr, Ni, Co, Cu and Pb) in both lakes were associated with these element types but they did not necessarily belong to the same type in both lakes. Other elemental types likely occurred (e.g., carbonate type and Fe types) but they were not clearly identified. After 50 years, surface concentrations ranged from 0 to 1.15 U L 1 in Lake Tanganyika and from 0 to 2.40 U L 1 in Lake Malawi. The difference between the lakes was linked to the greater volume of Lake Tanganyika, mainly in its hypolimnion, and to the longer vertical water exchange time in Lake Tanganyika. For Cl-type elements the concentration response decreased for both lakes from the epi- to the hypolimnion with similar kinetics for the epi- and metalimnion and a delay for the hypolimnion. For Si-type elements the response decreased in Lake Malawi from the hypo- to the epilimnion and for Lake Tanganyika the maximal concentration was calculated in the metalimnion. The concentration range was higher in Lake Malawi than in Lake Tanganyika. For the Mn-type elements, the maximum concentration was calculated in the hypolimnion with a higher response in Lake Malawi. The metalimnetic water concentration of Lake Tanganyika increased slightly and epilimnetic and metalimnetic waters of Lake Malawi did not react. For V-type elements the epilimnetic waters were more sensitive to the increase, with a higher response for Lake Malawi. In Lake Malawi concentrations also increased in the metalimnion. Concentrations in the hypolimnetic zone of both lakes and metalimnetic zone in Lake Tanganyika remained zero. Depending on the element type and on the lake, the time required to return to initial conditions, when contaminant inputs stopped, varied from 30 to 7 300 years. In the epilimnetic zone of both lakes the intensity of reaction and the pollution persistence were higher for Cl-type elements. For Si-type elements, mainly in Lake Malawi, the vertical input from deep waters was sufficient to sustain productivity even after the input of pollutants was stopped. For these elements the dissolved contamination was mainly stored in deep waters. For Mn-type elements the contamination was also stored in deep waters with a relatively slow net transfer to the sedimentary compartment. V-type pollutants were transferred from the dissolved to the particulate phase in deep waters leading to a relatively rapid net transfer to the sediment. Once the pollutant was in the system and until its evacuation to the outlet or to sediment, the risk for the ecosystem and for the population was associated with its presence in the dissolved phase of the surface water. The risk was then higher for Cl- and V-type elements as well as for the Si-type elements that were introduced into the web food. For the Si- and Mn-type elements that were mainly stored in deep waters, the associated risk was linked to a breaking of the thermo-haline stratification or to a reinforcement of vertical mixing. For the V-type elements and also for the sedimentary fraction of the Mn-type elements, the risk was also associated with possible remobilization from the sediments due to physico-chemical changes at the water-sediment interface.Element reactivity, efficiency of the vertical mixing and the depth of the oxycline control the importance and the kinetic response. They also controlled the time to attain initial conditions once contaminant inputs were stopped. These features, relative to the element and to the lake, were key parameters in the assessment of the potential risk for both the ecosystem and people that rely on these lakes. Even if the elemental typology was the same for both lakes, elements can be considered a different type from one lake to another. Contamination from the same pollutant would then have different consequences, for instance regarding the associated risk. Computed hydrochemical budgets were simple but realistic, illustrating the behaviour of elements in the water column. Computation of this budget requires the knowledge of global water column fluxes, which have to be improved mainly for Lake Tanganyika. The element's reactivity was mainly linked to liquid-solid reactions. It would be interesting in future studies to characterise particulate phases and their reactivity and to introduce such processes in hydro-geochemical models. Computations of chronic contamination response indicate that for both lakes, due to the inertia of the hydrochemical system, the lack of lake water contamination does not imply a systematic lack of pollution in the tributaries. Once pollution is detected, it will be persistent. A global watershed monitoring program should be organised in the near future. Monitored parameters should be relevant to metallic and organic pollutants, as well as eutrophication
Reconstruction of the formation history of the Darwin Mounds, N Rockall Trough: How the dynamics of a sandy contourite affected cold-water coral growth
Cold-water coral mounds, formed through a feed-back process of cold-water coral growth and sediment baffling, have been studied all along the NE Atlantic continental margin. However, major questions remain concerning their formation history, especially their initiation and early development in relation to the surrounding sediment dynamics. For the first time, two small mounds located in a sandy contourite have been cored from the top to mound base: here, the formation history of the Darwin Mounds, located in the Northern Rockall Trough was investigated and reconstructed from two piston cores using a multidisciplinary approach. This consisted of CT-scanning for quantifying coral density changes with depth, grain-size analysis to obtain the hydrodynamic trends and radiocarbon and U-series dating to place the results into a wider paleoceanographic context. The results show that the Darwin Mounds formed during the early Holocene (~ 10 ka BP) through sediment baffling, mainly by Lophelia pertusa. The initiation of both mounds shows a similar pattern of increased current velocities resulting in coarser sediment deposition and a relatively high coral density with a peak of 23 vol%. The mound growth was rapid between ~ 10–9.7 ka BP (up to 277 cm ka− 1 in one of the mounds), with further vibrant growth periods around ~ 8.8 ka BP, 6.5 ka BP and 3.4 ka BP. The demise of the mounds ca. ~ 3 ka BP was likely caused by an intensification in bottom current velocities causing a hostile environment for coral growth in the contourite setting. In a wider context, the development of the Darwin Mounds appears to have responded to the relative strength and position of the Subpolar Gyre, which affected food supply to the corals, sedimentation rates, current speeds and other water mass properties in the area
SAM68 is a physiological regulator of SMN2 splicing in spinal muscular atrophy
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by loss of motor neurons in patients with null mutations in the SMN1 gene. The almost identical SMN2 gene is unable to compensate for this deficiency because of the skipping of exon 7 during pre-messenger RNA (mRNA) processing. Although several splicing factors can modulate SMN2 splicing in vitro, the physiological regulators of this disease-causing event are unknown. We found that knockout of the splicing factor SAM68 partially rescued body weight and viability of SMAΔ7 mice. Ablation of SAM68 function promoted SMN2 splicing and expression in SMAΔ7 mice, correlating with amelioration of SMA-related defects in motor neurons and skeletal muscles. Mechanistically, SAM68 binds to SMN2 pre-mRNA, favoring recruitment of the splicing repressor hnRNP A1 and interfering with that of U2AF65 at the 3' splice site of exon 7. These findings identify SAM68 as the first physiological regulator of SMN2 splicing in an SMA mouse model
Becoming an actor of small-scale development projects: A qualitative investigation into the experience of international volunteers.
This research is a qualitative inquiry into the experience and everyday lives of international volunteers. Given the novel aspect of international volunteering in being a social phenomenon, this research was conceived with the aim to be an explorative study and to yield new elements with implications for future research. Indeed, the research participants account for a yet unexplored area of research which is their difficulty of becoming an ex-volunteer. This difficulty arises in social interactions in casual settings as they return to their original society, even years after the experience. The research also aims at bringing about transformative knowledge in the inquired area of research and in the field of development. The research addresses these aims by providing invaluable insights that pave the way for future inquiry, even more so by contributing to prescriptive recommendations for the maximization of mutual beneficial impacts of international volunteering both for the volunteers and for the host communities. Most of these recommendations are directed towards acknowledging the role and responsibilities of sending organisations as gatekeepers between the volunteers and the communities
A Commentary on Althusser's 1963 Presentation of Bourdieu and Passeron
The commentary provides contextual information about the seminar which Bourdieu and Passeron gave in the École Normale Supérieure on 6 December 1963. It appears that the intended series of seminars was curtailed, perhaps because the initial seminar of 6 December exposed the extent to which Althusser was formally managing the intentions of his guest speakers and resisting the implications of their ongoing research on students and their studies. The commentary argues that the conflict between Althusser and Bourdieu/Passeron was inter-generational in that Althusser’s attitudes had been shaped by his experience as a victim of Nazi oppression whereas those of Bourdieu/Passeron were defined, instead, by their unwilling participation in the French colonial oppression of indigenous Algerians. Althusser was intent on examining philosophically the validity of various contemporary versions of social science whereas Bourdieu and Passeron were engaged in educational research which was scrutinizing sociologically the validity of precisely this supposedly detached philosophical perspective. In short, the commentary is aligned with the Bourdieu/Passeron position in that it seeks to offer an historical sociology of the encounter of December 1963
ALMA finds dew drops in the dusty spider’s web
We present 0.̋5 resolution ALMA detections of the observed 246 GHz continuum, [CI] 3P2→3P1 fine structure line ([CI]2–1), CO(7–6), and H2O lines in the z = 2.161 radio galaxy MRC1138-262, the so-called Spiderweb galaxy. We detect strong [CI]2–1 emission both at the position of the radio core, and in a second component ~4 kpc away from it. The 1100 km s-1 broad [CI]2–1 line in this latter component, combined with its H2 mass of 1.6 × 1010 M⊙, implies that this emission must come from a compact region <60 pc, possibly containing a second active galactic nucleus (AGN). The combined H2 mass derived for both objects, using the [CI]2–1 emission, is 3.3 × 1010 M⊙. The total CO(7–6)/[CI]2–1 line flux ratio of 0.2 suggests a low excitation molecular gas reservoir and/or enhanced atomic carbon in cosmic ray dominated regions. We detect spatially-resolved H2O 211−202 emission – for the first time in a high-z unlensed galaxy – near the outer radio lobe to the east, and near the bend of the radio jet to the west of the radio galaxy. No underlying 246 GHz continuum emission is seen at either position. We suggest that the H2O emission is excited in the cooling region behind slow (10–40 km s-1) shocks in dense molecular gas (103−5 cm-3). The extended water emission is likely evidence of the radio jet’s impact on cooling and forming molecules in the post-shocked gas in the halo and inter-cluster gas, similar to what is seen in low-z clusters and other high-z radio galaxies. These observations imply that the passage of the radio jet in the interstellar and inter-cluster medium not only heats gas to high temperatures, as is commonly assumed or found in simulations, but also induces cooling and dissipation, which can lead to substantial amounts of cold dense molecular gas. The formation of molecules and strong dissipation in the halo gas of MRC1138-262 may explain both the extended diffuse molecular gas and the young stars observed around MRC1138-262
Microevolution during the emergence of a monophasic Salmonella Typhimurium epidemic in the United Kingdom
Microevolutionary events associated with the emergence and clonal expansion of new 27 epidemic clones of bacterial pathogens hold the key to understanding the drivers of 28 epidemiological success. We describe a comparative whole genome sequence and 29 phylogenomic analysis of monophasic Salmonella Typhimurium isolates from the UK 30 and Italy from 2005-2012. Monophasic isolates from this time formed a single clade 31 distinct from recent monophasic epidemic clones described previously from North 32 America and Spain. The current UK monophasic epidemic clones encode a novel 33 genomic island encoding resistance to heavy metals (SGI-3), and composite transposon 34 encoding antibiotic resistance genes not present in other Typhimurium isolates, that 35 may have contributed to the epidemiological success. We also report a remarkable 36 degree of genotypic variation that accumulated during clonal expansion of a UK 37 epidemic including multiple independent acquisitions of a novel prophage carrying the 38 sopE gene and multiple deletion events affecting the phase II flagellin locus
- …
