51 research outputs found

    Optimization of quantum state tomography in the presence of experimental constraints

    Full text link
    In the absence of experimental constraints, optimal measurement schemes for quantum state tomography are well understood. We consider the scenario where the experimenter doesn't have arbitrary freedom to construct their measurement set, and may therefore not be able to implement a known optimal scheme. We introduce a simple procedure for minimizing the uncertainty in the reconstructed quantum state for an arbitrary tomographic scheme. We do this by defining a figure of merit based on the equally-weighted variance of the measurement statistics. This figure of merit is straightforwardly based on the singular value decomposition of the measurement matrix, making it well-suited for optimization.Comment: Additional discussion and minor edits; 7 pages (main text), 11 pages (total), 4 figures; comments very welcome

    Thermal Light as a Mixture of Sets of Pulses: the Quasi-1D Example

    Get PDF
    The relationship between thermal light and coherent pulses is of fundamental and practical interest. We now know that thermal light cannot be represented as a statistical mixture of single pulses. In this paper we ask whether or not thermal light can be represented as a statistical mixture of sets of pulses. We consider thermal light in a one-dimensional wave-guide, and find a convex decomposition into products of orthonormal coherent states of localized, nonmonochromatic modes.Comment: 6 pages and 3 figures, published versio

    Modelling optical micro-machines

    Get PDF
    A strongly focused laser beam can be used to trap, manipulate and exert torque on a microparticle. The torque is the result of transfer of angular momentum by scattering of the laser beam. The laser could be used to drive a rotor, impeller, cog wheel or some other microdevice of a few microns in size, perhaps fabricated from a birefringent material. We review our methods of computationally simulating the torque and force imparted by a laser beam. We introduce a method of hybridizing the T-matrix with the Finite Difference Frequency Domain (FDFD) method to allow the modelling of materials that are anisotropic and inhomogeneous, and structures that have complex shapes. The high degree of symmetry of a microrotor, such as discrete or continuous rotational symmetry, can be exploited to reduce computational time and memory requirements by orders of magnitude. This is achieved by performing calculations for only a given segment or plane that is repeated across the whole structure. This can be demonstrated by modelling the optical trapping and rotation of a cube.Comment: 4 pages, 3 figure

    Towards efficient modelling of optical micromanipulation of complex structures

    Get PDF
    Computational methods for electromagnetic and light scattering can be used for the calculation of optical forces and torques. Since typical particles that are optically trapped or manipulated are on the order of the wavelength in size, approximate methods such as geometric optics or Rayleigh scattering are inapplicable, and solution or either the Maxwell equations or the vector Helmholtz equation must be resorted to. Traditionally, such solutions were only feasible for the simplest geometries; modern computational power enable the rapid solution of more general--but still simple--geometries such as axisymmetric, homogeneous, and isotropic scatterers. However, optically-driven micromachines necessarily require more complex geometries, and their computational modelling thus remains in the realm of challenging computational problems. We review our progress towards efficient computational modelling of optical tweezers and micromanipulation, including the trapping and manipulation of complex structures such as optical micromachines. In particular, we consider the exploitation of symmetry in the modelling of such devices.Comment: 5 pages, 4 figure

    Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing

    Full text link
    We present a simple technique to reduce the emission rate of higher-order photon events from pulsed spontaneous parametric down-conversion. The technique uses extra-cavity control over a mode locked ultrafast laser to simultaneously increase repetition rate and reduce the energy of each pulse from the pump beam. We apply our scheme to a photonic quantum gate, showing improvements in the non-classical interference visibility for 2-photon and 4-photon experiments, and in the quantum-gate fidelity and entangled state production in the 2-photon case.Comment: 8 pages, 6 figure

    What Makes Loader Handling So Difficult?

    Get PDF
    corecore