1,409 research outputs found

    La concentration spatiale relative de la criminalité et son analyse : vers un renouvellement de la criminologie environnementale

    Get PDF
    This particular article describes and applies one type of analysis borrowed from regional economics and regional planning to look at macro to micro patterns in criminal activity. The technique is called Location Quotients and is used to analyse the relative mix of crimes across areas. Location Quotients are shown to have their strongest potential in microanalysis of crime patterns. As an initial test of the technique's relativistic analytic value. Location Quotients for motor vehicle theft were calculated for several levels within a Canadian cone of resolution that descends from the provincial level to the individual level in the municipality of Burnaby, British Columbia

    Bees

    Get PDF
    Harrison\u27s truck bumps over something he didn\u27t see, and his eyes flint into the rearview to watch his father\u27s beehive come off the bed a couple of inches and slam down again onto the metal. The hive is a manmade box just barely too large for Harrison to carry by himself and painted white. Inside are slats made out of a tightly woven chicken wire and of course, bees and their honey. It\u27s not the honey that his father wants, though. It\u27s the bees and their stings, which are the best treatment that his father knows for his rheumatism

    The Logic of Data Bias and Its Impact on Place- Based Predictive Policing

    Get PDF

    Understanding

    Get PDF

    Power of Criminal Attractors: Modeling the Pull of Activity Nodes

    Get PDF
    The spatial distribution of crime has been a long-standing interest in the field of criminology. Research in this area has shown that activity nodes and travel paths are key components that help to define patterns of offending. Little research, however, has considered the influence of activity nodes on the spatial distribution of crimes in crime neutral areas - those where crimes are more haphazardly dispersed. Further, a review of the literature has revealed a lack of research in determining the relative strength of attraction that different types of activity nodes possess based on characteristics of criminal events in their immediate surrounds. In this paper we use offenders' home locations and the locations of their crimes to define directional and distance parameters. Using these parameters we apply mathematical structures to define rules by which different models may behave to investigate the influence of activity nodes on the spatial distribution of crimes in crime neutral areas. The findings suggest an increasing likelihood of crime as a function of geometric angle and distance from an offender's home location to the site of the criminal event. Implications of the results are discussed.Crime Attractor, Directionality of Crime, Mathematical Modeling, Computational Criminology

    Deep Learning for Real Time Crime Forecasting

    Full text link
    Accurate real time crime prediction is a fundamental issue for public safety, but remains a challenging problem for the scientific community. Crime occurrences depend on many complex factors. Compared to many predictable events, crime is sparse. At different spatio-temporal scales, crime distributions display dramatically different patterns. These distributions are of very low regularity in both space and time. In this work, we adapt the state-of-the-art deep learning spatio-temporal predictor, ST-ResNet [Zhang et al, AAAI, 2017], to collectively predict crime distribution over the Los Angeles area. Our models are two staged. First, we preprocess the raw crime data. This includes regularization in both space and time to enhance predictable signals. Second, we adapt hierarchical structures of residual convolutional units to train multi-factor crime prediction models. Experiments over a half year period in Los Angeles reveal highly accurate predictive power of our models.Comment: 4 pages, 6 figures, NOLTA, 201

    Latent Self-Exciting Point Process Model for Spatial-Temporal Networks

    Full text link
    We propose a latent self-exciting point process model that describes geographically distributed interactions between pairs of entities. In contrast to most existing approaches that assume fully observable interactions, here we consider a scenario where certain interaction events lack information about participants. Instead, this information needs to be inferred from the available observations. We develop an efficient approximate algorithm based on variational expectation-maximization to infer unknown participants in an event given the location and the time of the event. We validate the model on synthetic as well as real-world data, and obtain very promising results on the identity-inference task. We also use our model to predict the timing and participants of future events, and demonstrate that it compares favorably with baseline approaches.Comment: 20 pages, 6 figures (v3); 11 pages, 6 figures (v2); previous version appeared in the 9th Bayesian Modeling Applications Workshop, UAI'1

    Early Identification of Violent Criminal Gang Members

    Full text link
    Gang violence is a major problem in the United States accounting for a large fraction of homicides and other violent crime. In this paper, we study the problem of early identification of violent gang members. Our approach relies on modified centrality measures that take into account additional data of the individuals in the social network of co-arrestees which together with other arrest metadata provide a rich set of features for a classification algorithm. We show our approach obtains high precision and recall (0.89 and 0.78 respectively) in the case where the entire network is known and out-performs current approaches used by law-enforcement to the problem in the case where the network is discovered overtime by virtue of new arrests - mimicking real-world law-enforcement operations. Operational issues are also discussed as we are preparing to leverage this method in an operational environment.Comment: SIGKDD 201

    Semi-Supervised First-Person Activity Recognition in Body-Worn Video

    Get PDF
    Body-worn cameras are now commonly used for logging daily life, sports, and law enforcement activities, creating a large volume of archived footage. This paper studies the problem of classifying frames of footage according to the activity of the camera-wearer with an emphasis on application to real-world police body-worn video. Real-world datasets pose a different set of challenges from existing egocentric vision datasets: the amount of footage of different activities is unbalanced, the data contains personally identifiable information, and in practice it is difficult to provide substantial training footage for a supervised approach. We address these challenges by extracting features based exclusively on motion information then segmenting the video footage using a semi-supervised classification algorithm. On publicly available datasets, our method achieves results comparable to, if not better than, supervised and/or deep learning methods using a fraction of the training data. It also shows promising results on real-world police body-worn video

    Editorial: crime patterns in time and space: the dynamics of crime opportunities in urban areas

    Get PDF
    The routine activity approach and associated crime pattern theory emphasise how crime emerges from spatio-temporal routines. In order to understand this crime should be studied in both space and time. However, the bulk of research into crime patterns and related activities has investigated the spatial distributions of crime, neglecting the temporal dimension. Specifically, disaggregation of crime by place and by time, for example hour of day, day of week, month of year, season, or school day versus none school day, is extremely relevant to theory. Modern data make such spatio-temporal disaggregation increasingly feasible, as exemplified in this special issue. First, much larger data files allow disaggregation of crime data into temporal and spatial slices. Second, new forms of data are generated by modern technologies, allowing innovative and new forms of analyses. Crime pattern analyses and routine activity inquiries are now able to explore avenues not previously available. The unique collection of nine papers in this thematic issue specifically examine spatio-temporal patterns of crime to; demonstrate the value of this approach for advancing knowledge in the field; consider how this informs our theoretical understanding of the manifestations of crime in time and space; to consider the prevention implications of this; and to raise awareness of the need for further spatio-temporal research into crime event
    corecore