6 research outputs found

    Two dimensional bulge disk decomposition

    Get PDF
    We propose a two dimensional galaxy fitting algorithm to extract parameters of the bulge, disk, and a central point source from broad band images of galaxies. We use a set of realistic galaxy parameters to construct a large number of model galaxy images which we then use as input to our galaxy fitting program to test it. We find that our approach recovers all structural parameters to a fair degree of accuracy. We elucidate our procedures by extracting parameters for 3 real galaxies -- NGC 661, NGC 1381, and NGC 1427.Comment: 23 pages, LaTeX, AASTEX macros used, 7 Postscript figures, submitted to Ap

    Reaction-based Enumeration, Active Learning, and Free Energy Calculations to Rapidly Explore Synthetically Tractable Chemical Space and Optimize Potency of Cyclin Dependent Kinase 2 Inhibitors

    No full text
    We report a new computational technique, PathFinder, that uses retrosynthetic analysis followed by combinatorial synthesis to generate novel compounds in synthetically accessible chemical space. Coupling PathFinder with active learning and cloud-based free energy calculations allows for large-scale potency predictions of compounds on a timescale that impacts drug discovery. The process is further accelerated by using a combination of population-based statistics and active learning techniques. Using this approach, we rapidly optimized R-groups and core hops for inhibitors of cyclin-dependent kinase 2. We explored greater than 300 thousand ideas and identified 35 ligands with diverse commercially available R-groups and a predicted IC&lt;sub&gt;50&lt;/sub&gt; &lt; 100 nM, and four unique cores with a predicted IC&lt;sub&gt;50&lt;/sub&gt; &lt; 100 nM. The rapid turnaround time, and scale of chemical exploration, suggests that this is a useful approach to accelerate the discovery of novel chemical matter in drug discovery campaigns.</jats:p

    Reaction-based Enumeration, Active Learning, and Free Energy Calculations to Rapidly Explore Synthetically Tractable Chemical Space and Optimize Potency of Cyclin Dependent Kinase 2 Inhibitors

    No full text
    We report a new computational technique, PathFinder, that uses retrosynthetic analysis followed by combinatorial synthesis to generate novel compounds in synthetically accessible chemical space. Coupling PathFinder with active learning and cloud-based free energy calculations allows for large-scale potency predictions of compounds on a timescale that impacts drug discovery. The process is further accelerated by using a combination of population-based statistics and active learning techniques. Using this approach, we rapidly optimized R-groups and core hops for inhibitors of cyclin-dependent kinase 2. We explored greater than 300 thousand ideas and identified 35 ligands with diverse commercially available R-groups and a predicted IC50 50 < 100 nM. The rapid turnaround time, and scale of chemical exploration, suggests that this is a useful approach to accelerate the discovery of novel chemical matter in drug discovery campaigns

    Reaction-based Enumeration, Active Learning, and Free Energy Calculations to Rapidly Explore Synthetically Tractable Chemical Space and Optimize Potency of Cyclin Dependent Kinase 2 Inhibitors

    No full text
    We report a new computational technique, PathFinder, that uses retrosynthetic analysis followed by combinatorial synthesis to generate novel compounds in synthetically accessible chemical space. Coupling PathFinder with active learning and cloud-based free energy calculations allows for large-scale potency predictions of compounds on a timescale that impacts drug discovery. The process is further accelerated by using a combination of population-based statistics and active learning techniques. Using this approach, we rapidly optimized R-groups and core hops for inhibitors of cyclin-dependent kinase 2. We explored greater than 300 thousand ideas and identified 35 ligands with diverse commercially available R-groups and a predicted IC50 50 < 100 nM. The rapid turnaround time, and scale of chemical exploration, suggests that this is a useful approach to accelerate the discovery of novel chemical matter in drug discovery campaigns

    Reaction-Based Enumeration, Active Learning, and Free Energy Calculations To Rapidly Explore Synthetically Tractable Chemical Space and Optimize Potency of Cyclin-Dependent Kinase 2 Inhibitors

    No full text
    The hit-to-lead and lead optimization processes usually involve the design, synthesis, and profiling of thousands of analogs prior to clinical candidate nomination. A hit finding campaign may begin with a virtual screen that explores millions of compounds, if not more. However, this scale of computational profiling is not frequently performed in the hit-to-lead or lead optimization phases of drug discovery. This is likely due to the lack of appropriate computational tools to generate synthetically tractable lead-like compounds in silico, and a lack of computational methods to accurately profile compounds prospectively on a large scale. Recent advances in computational power and methods provide the ability to profile much larger libraries of ligands than previously possible. Herein, we report a new computational technique, referred to as “PathFinder”, that uses retrosynthetic analysis followed by combinatorial synthesis to generate novel compounds in synthetically accessible chemical space. In this work, the integration of PathFinder-driven compound generation, cloud-based FEP simulations, and active learning are used to rapidly optimize R-groups, and generate new cores for inhibitors of cyclin-dependent kinase 2 (CDK2). Using this approach, we explored >300 000 ideas, performed >5000 FEP simulations, and identified >100 ligands with a predicted IC50 < 100 nM, including four unique cores. To our knowledge, this is the largest set of FEP calculations disclosed in the literature to date. The rapid turnaround time, and scale of chemical exploration, suggests that this is a useful approach to accelerate the discovery of novel chemical matter in drug discovery campaigns
    corecore