188 research outputs found
Evaluation of δD and δ18O as Natural Markers of Invertebrate Source Environment and Dispersal in the Middle Mississippi River-Floodplain Ecosystem
Movement of invertebrates among large rivers, tributaries, and floodplain lakes or dispersal of adult aquatic insects from riverine or floodplain habitats may provide important subsidies to food webs in receiving habitats. Intensive sampling at habitat interfaces and artificial labeling are two approaches to assess freshwater invertebrate dispersal, but these are difficult to implement at a landscape scale. Natural chemical tracers have been used to track dispersal of fishes and marine invertebrates, but the potential applicability of stable isotope ratios as natural tracers of invertebrate dispersal in freshwater environments has not been assessed. We evaluated stable hydrogen and oxygen isotopes (δD and δ18O) as natural markers of source environment and dispersal of macroinvertebrates in the middle Mississippi River, tributaries, and floodplain wetlands. Water and invertebrates were collected from 12 sites during 2007-2008. Water δD and δ18O differed among the river, its tributaries, and floodplain wetlands and were strongly correlated with invertebrate δD and δ18O. Variability in invertebrate δ18O rendered it ineffective as an indicator of invertebrate source environment. Mean δD of Mississippi River invertebrates differed from δD of invertebrates from floodplain wetlands; δD distinguished invertebrates from these two environments with \u3e 80% accuracy. Neither δD nor δ18O of aquatic insects changed following emergence from their natal site. Preservation method (ethanol or freezing) did not affect invertebrate δD or δ18O. Invertebrate δD may be a useful natural tracer of natal environment and dispersal in the Mississippi River-floodplain ecosystem and other freshwater systems where spatial variation in water δD is present
Effects of zebra mussel attachment on the foraging behaviour of a larval dragonfly, Macromia illinoiensis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/88127/1/j.1365-2311.2011.01329.x.pd
Modeling nutrient transport and transformation by pool-breeding amphibians in forested landscapes using a 21 year dataset
Relative influences of catchment- and reach-scale abiotic factors on freshwater fish communities in rivers of northeastern Mesoamerica
Esselman PC, Allan JD. Relative influences of catchment- and reach-scale abiotic factors on freshwater fish communities in rivers of northeastern Mesoamerica. Ecology of Freshwater Fish 2010: 19: 439–454. © 2010 John Wiley & Sons A/SWhile the abiotic factors important to freshwater fish assemblages at a reach scale are well understood, studies of larger scale constraints have yielded variable conclusions, spurring a need for further studies in new biogeographic contexts. This study investigated the importance of catchment- and reach-scale abiotic factors to variation in freshwater fish assemblages in rivers of northeastern Mesoamerica. Abiotic variables and fish data from 72 sampling sites on main stem rivers of Belize were used with partial constrained ordination to determine the proportion of spatially structured and unstructured variation in fish presence and absence, relative abundance, and community metrics explained by catchment- and reach-scale environmental factors. Results showed that, combined, catchment and reach variables explained a large portion of the total variation in the fish assemblage data (54–75%), and that catchment environment explained a greater portion of variation (42–63%) than reach environment (34–50%). Variables representing landscape position (local elevation, watershed area) and their reach-level correlates (channel width, depth variation, and substrate) correlated strongly to the fish assemblage data. Our results suggest that landscape-scale factors have a stronger relative influence on assemblages than environmental conditions at the reach scale within our study area. These results contrast with past findings that showed greater local scale influence in landscapes with low anthropogenic disturbance levels. Our findings suggest that biodiversity conservation efforts should consider assemblage variation across a longitudinal gradient, and that a multi-catchment region is a biologically relevant scale for fish conservation planning and coordination in northeastern Mesoamerica.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79336/1/j.1600-0633.2010.00430.x.pd
Environmental Indicators for the Coastal Region of the U.S. Great Lakes
The goal of this research collaboration was to develop indicators that both estimate environmental condition and suggest plausible causes of ecosystem degradation in the coastal region of the U.S. Great Lakes. The collaboration consisted of 8 broad components, each of which generated different types of environmental responses and characteristics of the coastal region. These indicators included biotic communities of amphibians, birds, diatoms, fish, macroinvertebrates, and wetland plants as well as indicators of polycyclic aromatic hydrocarbon (PAH) photo-induced toxicity and landscape characterization. These components are summarized below and discussed in more detailed in 5 separate reports (Section II). Stress gradients within the U.S. Great Lakes coastal region were defined from 207 variables (e.g., agriculture, atmospheric deposition, land use/land cover, human populations, point source pollution, and shoreline modification) from 19 different data sources that were publicly available for the coastal region. Biotic communities along these gradients were sampled with a stratified, random design among representative ecosystems within the coastal zone. To achieve the sampling across this massive area, the coastal region was subdivided into 2 major ecological provinces and further subdivided into 762 segment sheds. Stress gradients were defined for the major categories of human-induced disturbance in the coastal region and an overall stress index was calculated which represented a combination of all the stress gradients. Investigators of this collaboration have had extensive interactions with the Great Lakes community. For instance, the Lake Erie Lakewide Area Management Plan (LAMP) has adopted many of the stressor measures as integral indicators of the condition of watersheds tributary to Lake Erie. Furthermore, the conceptual approach and applications for development of a generalized stressor gradient have been incorporated into a document defining the tiered aquatic life criteria for defining biological integrity of the nation’s waters. A total of 14 indicators of the U.S. Great Lakes coastal region are presented for potential application. Each indicator is summarized with respect to its use, methodology, spatial context, and diagnosis capability. In general, the results indicate that stress related to agricultural activity and human population density/development had the largest impacts on the biotic community indicators. In contrast, the photoinduced PAH indicator was primarily related to industrial activity in the U.S. Great Lakes, and over half of the sites sampled were potentially at risk of PAH toxicity to larval fish. One of the indicators developed for land use/land change was developed from Landsat imagery for the entire U.S. Great Lakes basin and for the period from 1992 to 2001. This indicator quantified the extensive conversions of both agricultural and forest land to residential area that has occurred during a short 9 year period. Considerable variation in the responses were manifest at different spatial scales and many at surprisingly large scales. Significant advances were made with respect to development of methods for identifying and testing environmental indicators. In addition, many indicators and concepts developed from this project are being incorporated into management plans and U.S. 8 EPA methods documents. Further details, downloadable documents, and updates on these indicators can be found at the GLEI website - http://glei.nrri.umn.edu
Ecosystem Consequences of Contrasting Flow Regimes in an Urban Effects Stream Mesocosm Study 1
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73638/1/j.1752-1688.2009.00336.x.pd
Male-Specific Transfer and Fine Scale Spatial Differences of Newly Identified Cuticular Hydrocarbons and Triacylglycerides in a Drosophila Species Pair
We analyzed epicuticular hydrocarbon variation in geographically isolated populations of D. mojavensis cultured on different rearing substrates and a sibling species, D. arizonae, with ultraviolet laser desorption/ionization mass spectrometry (UV-LDI MS). Different body parts, i.e. legs, proboscis, and abdomens, of both species showed qualitatively similar hydrocarbon profiles consisting mainly of long-chain monoenes, dienes, trienes, and tetraenes. However, D. arizonae had higher amounts of most hydrocarbons than D. mojavensis and females of both species exhibited greater hydrocarbon amounts than males. Hydrocarbon profiles of D. mojavensis populations were significantly influenced by sex and rearing substrates, and differed between body parts. Lab food–reared flies had lower amounts of most hydrocarbons than flies reared on fermenting cactus substrates. We discovered 48 male- and species-specific hydrocarbons ranging in size from C22 to C50 in the male anogenital region of both species, most not described before. These included several oxygen-containing hydrocarbons in addition to high intensity signals corresponding to putative triacylglycerides, amounts of which were influenced by larval rearing substrates. Some of these compounds were transferred to female cuticles in high amounts during copulation. This is the first study showing that triacylglycerides may be a separate class of courtship-related signaling molecules in drosophilids. This study also extends the kind and number of epicuticular hydrocarbons in these species and emphasizes the role of larval ecology in influencing amounts of these compounds, many of which mediate courtship success within and between species
The accuracy of land cover-based wetland assessments is influenced by landscape extent
- …
