2,769 research outputs found

    Pathways to interleukin-6 in healthy males and serious leisure male athletes: physical activity, body composition and age.

    Get PDF
    Physical activity (PA) is beneficial to overall health, in part due to physiological changes that lower risk factors for cardiovascular disease, including reduced inflammation. However, the mechanism by which PA reduces inflammation is unclear. One possible pathway is that PA improves body composition which in turn reduces inflammation. To test this hypothesis, we used structural equation modeling (SEM) to assess PA-body composition -inflammation pathways, as well as influences of age. In a sample of 72 healthy males with a range of PA profiles (age 18-65, mean ± sd = ), we measured PA as metabolic equivalent tasks (as per the International PA Questionnaire), body composition as percent body fat, lean mass, and fat mass, and inflammation as plasma interleukin-6 (IL-6). We treated body composition in the SEM analysis as a latent variable indicated by the three measures. We performed statistical corrections for missing values and one outlier. The model demonstrated significant effects of PA on IL-6 both directly and through body composition. Percent body fat, fat mass, and lean mass were significant indicators of the body composition latent variable. Additionally, age showed an indirect effect on IL-6 through body composition, but no direct effect. The findings suggest that PA does improve inflammatory profile through improving body composition, but that other pathways also exist

    Global and regional source attribution of Shiga toxin-producing Escherichia coli infections using analysis of outbreak surveillance data

    Get PDF
    Shiga toxin-producing Escherichia coli (STEC) infections pose a substantial health and economic burden worldwide. To target interventions to prevent foodborne infections, it is important to determine the types of foods leading to illness. Our objective was to determine the food sources of STEC globally and for the six World Health Organization regions. We used data from STEC outbreaks that have occurred globally to estimate source attribution fractions. We categorised foods according to their ingredients and applied a probabilistic model that used information on implicated foods for source attribution. Data were received from 27 countries covering the period between 1998 and 2017 and three regions: the Americas (AMR), Europe (EUR) and Western-Pacific (WPR). Results showed that the top foods varied across regions. The most important sources in AMR were beef (40%; 95% Uncertainty Interval 39-41%) and produce (35%; 95% UI 34-36%). In EUR, the ranking was similar though with less marked differences between sources (beef 31%; 95% UI 28-34% and produce 30%; 95% UI 27-33%). In contrast, the most common source of STEC in WPR was produce (43%; 95% UI 36-46%), followed by dairy (27%; 95% UI 27-27%). Possible explanations for regional variability include differences in food consumption and preparation, frequency of STEC contamination, the potential of regionally predominant STEC strains to cause severe illness and differences in outbreak investigation and reporting. Despite data gaps, these results provide important information to inform the development of strategies for lowering the global burden of STEC infections

    Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing

    Get PDF
    The mammalian motor cortex typically innervates motor neurons indirectly via oligosynaptic pathways. However, evolution of skilled digit movements in humans, apes, and some monkey species is associated with the emergence of abundant monosynaptic cortical projections onto spinal motor neurons innervating distal limb muscles. Rats perform skilled movements with their whiskers, and we examined the possibility that the rat vibrissa motor cortex (VMC) projects monosynaptically onto facial motor neurons controlling the whisker movements. First, single injections of lentiviruses to VMC sites identified by intracortical microstimulations were used to label a distinct subpopulation of VMC axons or presynaptic terminals by expression of enhanced green fluorescent protein (GFP) or GFP-tagged synaptophysin, respectively. Four weeks after the injections, GFP and synaptophysin-GFP labeling of axons and putative presynaptic terminals was detected in the lateral portion of the facial nucleus (FN), in close proximity to motor neurons identified morphologically and by axonal back-labeling from the whisker follicles. The VMC projections were detected bilaterally, with threefold larger density of labeling in the contralateral FN. Next, multiple VMC injections were used to label a large portion of VMC axons, resulting in overall denser but still laterally restricted FN labeling. Ultrastructural analysis of the GFP-labeled VMC axons confirmed the existence of synaptic contacts onto dendrites and somata of FN motor neurons. These findings provide anatomical demonstration of monosynaptic VMC-to-FN pathway in the rat and show that lentivirus-based expression of GFP and GFP-tagged presynaptic proteins can be used as a high-resolution neuroanatomical tracing method

    Photon temporal modes: a complete framework for quantum information science

    Full text link
    Field-orthogonal temporal modes of photonic quantum states provide a new framework for quantum information science (QIS). They intrinsically span a high-dimensional Hilbert space and lend themselves to integration into existing single-mode fiber communication networks. We show that the three main requirements to construct a valid framework for QIS -- the controlled generation of resource states, the targeted and highly efficient manipulation of temporal modes and their efficient detection -- can be fulfilled with current technology. We suggest implementations of diverse QIS applications based on this complete set of building blocks.Comment: 17 pages, 13 figure

    Tomography and Purification of the Temporal-Mode Structure of Quantum Light

    Full text link
    High-dimensional quantum information processing promises capabilities beyond the current state of the art, but addressing individual information-carrying modes presents a significant experimental challenge. Here we demonstrate effective high-dimensional operations in the time-frequency domain of non-classical light. We generate heralded photons with tailored temporal-mode structures through ultrafast pulse shaping of a parametric downconversion pump. We then implement a quantum pulse gate, enabled by dispersion-engineered sum-frequency generation, to project onto programmable temporal modes, reconstructing the quantum state in seven dimensions. We also manipulate the time-frequency structure by selectively removing temporal modes, explicitly demonstrating the effectiveness of engineered nonlinear processes for mode-selective manipulation of quantum states
    corecore