1,124 research outputs found
A GWAS SNP for Schizophrenia Is Linked to the Internal MIR137 Promoter and Supports Differential Allele-Specific Expression
Single nucleotide polymorphisms (SNPs) within the MIR137 gene locus have been shown to confer risk for schizophrenia through genome-wide association studies (GWAS). The expression levels of microRNA-137 (miR-137) and its validated gene targets have also been shown to be disrupted in several neuropsychiatric conditions, including schizophrenia. Regulation of miR-137 expression is thus imperative for normal neuronal functioning. We previously characterised an internal promoter domain within the MIR137 gene that contained a variable number tandem repeat (VNTR) polymorphism and could alter the in vitro levels of miR-137 in a stimulus-induced and allele-specific manner. We now demonstrate that haplotype tagging-SNP analysis linked the rs1625579 GWAS SNP for schizophrenia to this internal MIR137 promoter through a proxy SNP rs2660304 located at this domain. We postulated that the rs2660304 promoter SNP may act as predisposing factor for schizophrenia through altering the levels of miR-137 expression in a genotype-dependent manner. Reporter gene analysis of the internal MIR137 promoter containing the common VNTR variant demonstrated genotype-dependent differences in promoter activity with respect to rs2660304. In line with previous reports, the major allele of the rs2660304 proxy SNP, which has previously been linked with schizophrenia risk through genetic association, resulted in downregulation of reporter gene expression in a tissue culture model. The genetic influence of the rs2660304 proxy SNP on the transcriptional activity of the internal MIR137 promoter, and thus the levels of miR-137 expression, therefore offers a distinct regulatory mechanism to explain the functional significance of the rs1625579 GWAS SNP for schizophrenia risk
Quality control, imputation and analysis of genome-wide genotyping data from the Illumina HumanCoreExome microarray
Drug Targetor:a web interface to investigate the human druggome for over 500 phenotypes
Summary: Results from hundreds of genome-wide association studies (GWAS) are now freely available and offer a catalogue of the association between phenotypes across medicine with variants in the genome. With the aim of using this data to better understand therapeutic mechanisms, we have developed Drug Targetor, a web interface that allows the generation and exploration of drug-target networks of hundreds of phenotypes using GWAS data. Drug Targetor networks consist of drug and target nodes ordered by genetic association and connected by drug-target or drug-gene relationship. We show that Drug Targetor can help prioritize drugs, targets and drug-target interactions for a specific phenotype based on genetic evidence.Availability and implementation: Drug Targetor v1.21 is a web application freely available online at drugtargetor.com and under MIT license. The source code can be found at https://github.com/hagax8/drugtargetor.Supplementary information: Supplementary data are available at Bioinformatics online.</p
Recommended from our members
Telomere length and bipolar disorder
Variation in telomere length is heritable and is currently considered a promising biomarker of susceptibility for neuropsychiatric disorders, particularly because of its association with memory function and hippocampal morphology. Here, we investigate telomere length in connection to familial risk and disease expression in bipolar disorder (BD). We used quantitative polymerase chain reactions and a telomere-sequence to single-copy-gene-sequence ratio method to determine telomere length in genomic DNA extracted from buccal smears from 63 patients with BD, 74 first-degree relatives (49 relatives had no lifetime psychopathology and 25 had a non-BD mood disorder) and 80 unrelated healthy individuals. Participants also underwent magnetic resonance imaging to determine hippocampal volumes and cognitive assessment to evaluate episodic memory using the verbal paired associates test. Telomere length was shorter in psychiatrically-well relatives (p=0.007) compared to unrelated healthy participants. Telomere length was also shorter in relatives (regardless of psychiatric status; p<0.01) and patients with BD not on lithium (p=0.02) compared to lithium-treated patients with BD. In the entire sample, telomere length was positively associated with left and right hippocampal volume and with delayed recall. This study provides evidence that shortened telomere length is associated with familial risk for BD. Lithium may have neuroprotective properties that require further investigation using prospective designs
Recommended from our members
The polygenic risk for bipolar disorder influences brain regional function relating to visual and default state processing of emotional information
Genome-wise association studies have identified a number of common single-nucleotide polymorphisms (SNPs), each of small effect, associated with risk to bipolar disorder (BD). Several risk-conferring SNPs have been individually shown to influence regional brain activation thus linking genetic risk for BD to altered brain function. The current study examined whether the polygenic risk score method, which models the cumulative load of all known risk-conferring SNPs, may be useful in the identification of brain regions whose function may be related to the polygenic architecture of BD. We calculated the individual polygenic risk score for BD (PGR-BD) in forty-one patients with the disorder, twenty-five unaffected first-degree relatives and forty-six unrelated healthy controls using the most recent Psychiatric Genomics Consortium data. Functional magnetic resonance imaging was used to define task-related brain activation patterns in response to facial affect and working memory processing. We found significant effects of the PGR-BD score on task-related activation irrespective of diagnostic group. There was a negative association between the PGR-BD score and activation in the visual association cortex during facial affect processing. In contrast, the PGR-BD score was associated with failure to deactivate the ventromedial prefrontal region of the default mode network during working memory processing. These results are consistent with the threshold-liability model of BD, and demonstrate the usefulness of the PGR-BD score in identifying brain functional alternations associated with vulnerability to BD. Additionally, our findings suggest that the polygenic architecture of BD is not regionally confined but impacts on the task-dependent recruitment of multiple brain regions.</p
The genetics of the mood disorder spectrum: genome-wide association analyses of over 185,000 cases and 439,000 controls
Characterization of a REST-Regulated Internal Promoter in the Schizophrenia Genome-Wide Associated Gene MIR137
MIR137 has been identified as a candidate gene for schizophrenia from genome-wide association studies via association with an intronic single nucleotide polymorphism (SNP), rs1625579. The location of the SNP suggests one mechanism in which transcriptional or posttranscriptional regulation of miR-137 expression could underlie schizophrenia. We identified and validated a novel promoter of the MIR137 gene adjacent to miR-137 itself which can direct the expression of distinct mRNA isoforms encoding miR-137. Analysis of both endogenous gene expression and reporter gene assays determined that this internal promoter is regulated by repressor element-1 silencing transcription factor (REST), which has previously been associated with pathways linked to schizophrenia. Distinct isoforms of REST mediate differential expression at this locus, suggesting the relative levels of these isoforms are important for miR-137 expression profiles. The internal promoter contains a variable number tandem repeat (VNTR) domain adjacent to the pre-miR-137 sequence. The reporter gene activity directed by this promoter was modified by the genotype of the VNTR. Differential expression was also observed in response to cocaine, which is known to regulate the REST pathway in SH-SY5Y cells. Our data support the hypothesis that a "gene × environment" interaction could modify the level of miR-137 expression via this internal promoter and that the genotype of the VNTR could modulate transcriptional responses. We demonstrate that this promoter region is not in disequilibrium with rs1625579 and therefore would supply a distinct pathway to potentially alter miR-137 levels in response to environmental cues
Genetic variation in the endocannabinoid system and response to cognitive behavioural therapy for child anxiety disorders
Extinction learning is an important mechanism in the successful psychological treatment of anxiety. Individual differences in response and relapse following Cognitive Behavior Therapy may in part be explained by variability in the ease with which fears are extinguished or the vulnerability of these fears to re-emerge. Given the role of the endocannabinoid system in fear extinction, this study investigates whether genetic variation in the endocannabinoid system explains individual differences in response to CBT. Children (N = 1,309) with a primary anxiety disorder diagnosis were recruited. We investigated the relationship between variation in the CNR1, CNR2, and FAAH genes and change in primary anxiety disorder severity between pre- and post-treatment and during the follow-up period in the full sample and a subset with fear-based anxiety disorder diagnoses. Change in symptom severity during active treatment was nominally associated (P < 0.05) with two SNPs. During the follow-up period, five SNPs were nominally associated with a poorer treatment response (rs806365 [CNR1]; rs2501431 [CNR2]; rs2070956 [CNR2]; rs7769940 [CNR1]; rs2209172 [FAAH]) and one with a more favorable response (rs6928813 [CNR1]). Within the fear-based subset, the effect of rs806365 survived multiple testing corrections (P < 0.0016). We found very limited evidence for an association between variants in endocannabinoid system genes and treatment response once multiple testing corrections were applied. Larger, more homogenous cohorts are needed to allow the identification of variants of small but statistically significant effect and to estimate effect sizes for these variants with greater precision in order to determine their potential clinical utility
Quality control, imputation and analysis of genome-wide genotyping data from the Illumina HumanCoreExome microarray
The decreasing cost of performing genome-wide association studies has made genomics widely accessible. However, there is a paucity of guidance for best practice in conducting such analyses. For the results of a study to be valid and replicable, multiple biases must be addressed in the course of data preparation and analysis. In addition, standardizing methods across small, independent studies would increase comparability and the potential for effective meta-analysis. This article provides a discussion of important aspects of quality control, imputation and analysis of genome-wide data from a low-coverage microarray, as well as a straight-forward guide to performing a genome-wide association study. A detailed protocol is provided online, with example scripts available at https://github.com/JoniColeman/gwas_scripts
- …
