163 research outputs found

    Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes

    Get PDF
    Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases

    Detection of regulator genes and eQTLs in gene networks

    Full text link
    Genetic differences between individuals associated to quantitative phenotypic traits, including disease states, are usually found in non-coding genomic regions. These genetic variants are often also associated to differences in expression levels of nearby genes (they are "expression quantitative trait loci" or eQTLs for short) and presumably play a gene regulatory role, affecting the status of molecular networks of interacting genes, proteins and metabolites. Computational systems biology approaches to reconstruct causal gene networks from large-scale omics data have therefore become essential to understand the structure of networks controlled by eQTLs together with other regulatory genes, and to generate detailed hypotheses about the molecular mechanisms that lead from genotype to phenotype. Here we review the main analytical methods and softwares to identify eQTLs and their associated genes, to reconstruct co-expression networks and modules, to reconstruct causal Bayesian gene and module networks, and to validate predicted networks in silico.Comment: minor revision with typos corrected; review article; 24 pages, 2 figure

    Assay platform for clinically relevant metallo-beta-lactamases

    Get PDF
    Metallo-β-lactamases (MBLs) are a growing threat to the use of almost all clinically used β-lactam antibiotics. The identification of broad-spectrum MBL inhibitors is hampered by the lack of a suitable screening platform, consisting of appropriate substrates and a set of clinically relevant MBLs. We report procedures for the preparation of a set of clinically relevant metallo-β-lactamases (i.e., NDM-1 (New Delhi MBL), IMP-1 (Imipenemase), SPM-1 (São Paulo MBL), and VIM-2 (Verona integron-encoded MBL)) and the identification of suitable fluorogenic substrates (umbelliferone-derived cephalosporins). The fluorogenic substrates were compared to chromogenic substrates (CENTA, nitrocefin, and imipenem), showing improved sensitivity and kinetic parameters. The efficiency of the fluorogenic substrates was exemplified by inhibitor screening, identifying 4-chloroisoquinolinols as potential pan MBL inhibitors

    Rapid copper acquisition by developing murine mesothelioma: Decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration

    Get PDF
    Copper, an essential trace element acquired through nutrition, is an important co-factor for pro-angiogenic factors including vascular endothelial growth factor (VEGF). Decreasing bioavailable copper has been used as an antiangiogenic and anti-cancer strategy with promising results. However, the role of copper and its potential as a therapy in mesothelioma is not yet well understood. Therefore, we monitored copper levels in progressing murine mesothelioma tumors and analyzed the effects of lowering bioavailable copper. Copper levels in tumors and organs were assayed using atomic absorption spectrophotometry. Mesothelioma tumors rapidly sequestered copper at early stages of development, the copper was then dispersed throughout growing tumor tissues. These data imply that copper uptake may play an important role in early tumor development. Lowering bioavailable copper using the copper chelators, penicillamine, trientine or tetrathiomolybdate, slowed in vivo mesothelioma growth but did not provide any cures similar to using cisplatin chemotherapy or anti-VEGF receptor antibody therapy. The impact of copper lowering on tumor blood vessels and tumor infiltrating T cells was measured using flow cytometry and confocal microscopy. Copper lowering was associated with reduced tumor vessel diameter, reduced endothelial cell proliferation (reduced Ki67 expression) and lower surface ICAM/CD54 expression implying reduced endothelial cell activation, in a process similar to endothelial normalization. Copper lowering was also associated with a CD4+ T cell infiltrate. In conclusion, these data suggest copper lowering is a potentially useful anti-mesothelioma treatment strategy that slows tumor growth to provide a window of opportunity for inclusion of other treatment modalities to improve patient outcomes

    Computer-assisted and fractal-based morphometric assessment of microvascularity in histological specimens of gliomas

    Get PDF
    Fractal analysis is widely applied to investigate the vascular system in physiological as well as pathological states. We propose and examine a computer-aided and fractal-based image analysis technique to quantify the microvascularity in histological specimens of WHO grade II and III gliomas. A computer-aided and fractal-based analysis was used to describe the microvessels and to quantify their geometrical complexity in histological specimens collected from 17 patients. The statistical analysis showed that the fractal-based indexes are the most discriminant parameters to describe the microvessels. The computer-aided quantitative analysis also showed that grade III gliomas are generally more vascularized than grade II gliomas. The fractal parameters are reliable quantitative indicators of the neoplastic microvasculature, making them potential surrogate biomarkers. The qualitative evaluation currently performed by the neuropathologist can be combined with the computer-assisted quantitative analysis of the microvascularity to improve the diagnosis and optimize the treatment of patients with brain cancer

    Brain metastases from solid tumors: disease outcome according to type of treatment and therapeutic resources of the treating center

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the therapeutic strategies commonly employed in the clinic for the management of brain metastases (BMs) and to correlate disease outcome with type of treatment and therapeutic resources available at the treating center.</p> <p>Methods</p> <p>Four Cancer centres participated to the survey. Data were collected through a questionnaire filled in by one physician for each centre.</p> <p>Results</p> <p>Clinical data regarding 290 cancer patients with BMs from solid tumors were collected. Median age was 59 and 59% of patients had ≤ 3 brain metastases. A local approach (surgery and stereotactic radiosurgery) was adopted in 31% of patients. The local approach demonstrated to be superior in terms of survival compared to the regional/systemic approach (whole brain radiotherapy and chemotherapy, p = <.0001 for survival at 2 years). In the multivariate analysis local treatment was an independent prognostic factor for survival. When patients were divided into 2 groups whether they were treated in centers where local approaches were available or not (group A vs group B respectively, 58% of patients with ≤ 3 BMs in both cohorts), more patients in group A received local strategies although no difference in time to brain progression at 1 year was observed between the two groups of patients.</p> <p>Conclusions</p> <p>In clinical practice, local strategies should be integrated in the management of brain metastases. Proper selection of patients who are candidate to local treatments is of crucial importance.</p

    Cerebrospinal fluid approach on neuro-oncology

    Full text link
    Central nervous system (CNS) involvement is a major complication of haematological and solid tumors with an incidence that ranges from 10% in solid malignances up to 25% in specific leukaemia or lymphoma subtypes. Cerebrospinal fluid (CSF) patterns are unspecific. Though CSF cytology has a high specificity (up to 95%), its sensitivity is generally less than 50% and no diagnostic gold standard marker is available, yet. New technologies such as flow cytometry, molecular genetics and newer biomarkers may improve diagnostic sensitivity and specificity, leading to the CNS involvement diagnosis, and consequently, to an effective prophylaxis and successful treatment

    Intrapericardial Delivery of Gelfoam Enables the Targeted Delivery of Periostin Peptide after Myocardial Infarction by Inducing Fibrin Clot Formation

    Get PDF
    Background: Administration of a recombinant peptide of Periostin (rPN) has recently been shown to stimulate cardiomyocyte proliferation and angiogensis after myocardial infarction (MI). However, strategies for targeting the delivery of rPN to the heart are lacking. Intrapericardial administration of drug-eluting hydrogels may provide a clinically viable strategy for increasing myocardial retention, therapeutic efficacy, and bioactivity of rPN and to decrease systemic re-circulation. Methods and Results: We investigated the ability of intrapericardial injections of drug-eluting hydrogels to deliver and prolong the release of rPN to the myocardium in a large animal model of myocardial infarction. Gelfoam is an FDA-approved hemostatic material commonly used in surgery, and is known to stimulate fibrin clot formation. We show that Gelfoam disks loaded with rPN, when implanted within the pericardium or peritoneum of mammals becomes encapsulated within a non-fibrotic fibrin-rich hydrogel, prolonging the in vitro and in vivo release of rPN. Administration into the pericardial cavity of pigs, following a complete occlusion of the left anterior descending artery, leads to greater induction of cardiomyocyte mitosis, increased cardiomyocyte cell cycle activity, and enhanced angiogenesis compared to direct injection of rPN alone. Conclusions: The results of this study suggest that intrapericardial drug delivery of Gelfoam, enhanced by triggered clot formation, can be used to effectively deliver rPN to the myocardium in a clinically relevant model of myocardial infarction. The work presented here should enhance the translational potential of pharmaceutical-based strategies that must be targeted to the myocardium

    Vascular density and phenotype around ductal carcinoma in situ (DCIS) of the breast

    Get PDF
    Up to 50% of recurrences of ductal carcinoma in situ of the breast are associated with invasive carcinoma but no pathological or molecular features have yet been found to predict for the development of invasive disease. For a tumour to invade, it requires the formation of new blood vessels. Previous studies have described a vascular rim around ducts involved by ductal carcinoma in situ, raising the possibility that the characteristics of periductal vascularisation may be important in determining transformation from in situ to invasive disease. Periductal vascular density and phenotype were determined using morphometry and a panel of anti-endothelial antibodies (von Willebrand factor, CD31, CD141 and CD34) and related to the presence of invasive carcinoma and other histological features. Compared to normal lobules, pure ductal carcinoma in situ exhibited a greater density of CD34+ and CD31+ vessels but a decrease in those that were immunopositive for vWF, indicating a difference in phenotype and in density. Ductal carcinoma in situ associated with invasive carcinoma showed a profile of vascular immunostaining similar to that of pure ductal carcinoma in situ but there were significantly greater numbers of CD34+ and CD141+ vessels and fewer staining for vWF. There was a significant negative correlation between vascular density and both the cross-sectional areas of the ducts involved and the extent of the necrosis of the tumour they contained. A correlation between vascular density and nuclear grade was also noted, being highest in the intermediate grade. The greater density of CD34+ and CD141+ vessels around ductal carcinoma in situ associated with invasive carcinoma could reflect a greater predisposition to invade but a direct effect of co-existent invasive carcinoma cannot entirely be ruled out in the present study. The relationship between vascular density, grade, duct size and nuclear grade suggests that periductal angiogenesis increases with tumour growth rate but is unable to keep pace with the most rapidly growing lesions

    Thiram inhibits angiogenesis and slows the development of experimental tumours in mice

    Get PDF
    Thiram-tetramethylthiuram disulphide – a chelator of heavy metals, inhibited DNA synthesis and induced apoptosis in cultured bovine capillary endothelial cells. Bovine capillary endothelial cells were 10–60-fold more sensitive to thiram than other cell types. These effects were prevented by addition of antioxidants, indicating involvement of reactive oxygen species. Exogenously added Cu2+ impeded specifically and almost completely the inhibitory effect of thiram for bovine capillary endothelial cells. Moreover, thiram had markedly inhibited human recombinant Cu/Zn superoxide dismutase enzymatic activity (85%) in vitro. Moreover, PC12-SOD cells with elevated Cu/Zn superoxide dismutase were less sensitive to thiram treatment than control cells. These data indicate that the effects of thiram are mediated by inhibition of Cu/Zn superoxide dismutase activity. Oral administration of thiram (13–30 μg mouse−1), inhibited angiogenesis in CD1 nude mice. Tumour development is known to largely depend on angiogenesis. We found that oral administration of thiram (30 μg) to mice caused significant inhibition of C6 glioma tumour development (60%) and marked reduction (by 3–5-fold) in metastatic growth of Lewis lung carcinoma. The data establish thiram as a potential inhibitor of angiogenesis and raise the possibility for its use as therapy in pathologies in which neovascularisation is involved, including neoplasia
    corecore