124 research outputs found

    Soybean Flour and Wheat Germ Proportions in Artificial Diet and Their Effect on the Growth Rates of the Tobacco Budworm, Heliothis virescens

    Get PDF
    Soybean flour and wheat germ are the two most important protein components of wheat germ-based insect artificial diets. The effect of modifying the proportion of these two ingredients in a Noctuidae-specific diet was investigated utilizing the tobacco budworm Heliothis virescens (F.) (Lepidoptera: Noctuidae), with the goal of developing a suboptimal diet that, without drastically affecting this insect's growth and reproductive rates, could manifest subtle negative effects in this insect. The original diet formula contained 2.51% protein. When the proportions of soybean flour and wheat germ were changed to 2.15% protein the net reproductive rate of the first generation was significantly lower. In the second generation, the net reproductive rate, development time, percent female survivorship, fertility, intrinsic rate of increase, finite rate of increase and female longevity were significantly lower in both the 2.15% and 2.26% protein diets. The survival rate of immatures to the adult stage was 1% in the 2.05% protein diet in the first generation. Interestingly, females exposed to these suboptimal diets produced a significantly higher number of eggs but the survival of their larvae was significantly reduced. It is evident from these results that modifications to the protein content and the nutrient composition profile of the original wheat germ-based insect artificial formula can be used to produce subtle negative effects on the growth of tobacco budworm

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    Roles of glial cells in synapse development

    Get PDF
    Brain function relies on communication among neurons via highly specialized contacts, the synapses, and synaptic dysfunction lies at the heart of age-, disease-, and injury-induced defects of the nervous system. For these reasons, the formation—and repair—of synaptic connections is a major focus of neuroscience research. In this review, I summarize recent evidence that synapse development is not a cell-autonomous process and that its distinct phases depend on assistance from the so-called glial cells. The results supporting this view concern synapses in the central nervous system as well as neuromuscular junctions and originate from experimental models ranging from cell cultures to living flies, worms, and mice. Peeking at the future, I will highlight recent technical advances that are likely to revolutionize our views on synapse–glia interactions in the developing, adult and diseased brain

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Genetic and environmental aetiologies of associations between dispositional mindfulness and ADHD traits: a population-based twin study

    Get PDF
    © The Author(s) 2019. To get additional insight into the phenotype of attentional problems, we examined to what extent genetic and environmental factors explain covariation between lack of dispositional mindfulness and attention-deficit/hyperactivity disorder (ADHD) traits in youth, and explored the incremental validity of these constructs in predicting life satisfaction. We used data from a UK population-representative sample of adolescent twins (N = 1092 pairs) on lack of dispositional mindfulness [Mindful Attention Awareness Scale (MAAS)], ADHD traits [Conners’ Parent Rating Scale-Revised (CPRS-R): inattentive (INATT) and hyperactivity/impulsivity (HYP/IMP) symptom dimensions] and life satisfaction (Students’ Life Satisfaction Scale). Twin model fitting analyses were conducted. Phenotypic correlations (rp) between MAAS and CPRS-R (INATT: rp = 0.18, HYP/IMP: rp = 0.13) were small, but significant and largely explained by shared genes for INATT (% rp INATT–MAAS due to genes: 93%, genetic correlation rA = 0.37) and HYP/IMP (% rp HYP/IMP–MAAS due to genes: 81%; genetic correlation rA = 0.21) with no significant contribution of environmental factors. MAAS, INATT and HYP/IMP significantly and independently predicted life satisfaction. Lack of dispositional mindfulness, assessed as self-reported perceived lapses of attention (MAAS), taps into an aspect of attentional functioning that is phenotypically and genetically distinct from parent-rated ADHD traits. The clinically relevant incremental validity of both scales implicates that MAAS could be used to explore the underlying mechanisms of an aspect of attentional functioning that uniquely affects life satisfaction and is not captured by DSM-based ADHD scales. Further future research could identify if lack of dispositional mindfulness and high ADHD traits can be targeted by different therapeutic approaches resulting in different effects on life satisfactio

    A neuroscientist's guide to lipidomics

    Full text link
    Nerve cells mould the lipid fabric of their membranes to ease vesicle fusion, regulate ion fluxes and create specialized microenvironments that contribute to cellular communication. The chemical diversity of membrane lipids controls protein traffic, facilitates recognition between cells and leads to the production of hundreds of molecules that carry information both within and across cells. With so many roles, it is no wonder that lipids make up half of the human brain in dry weight. The objective of neural lipidomics is to understand how these molecules work together; this difficult task will greatly benefit from technical advances that might enable the testing of emerging hypotheses

    Univ. of Illinois’ Chippe / Slicer / Splicer System

    No full text
    corecore