62 research outputs found
The NN2 Flux Difference Method for Constructing Variable Object Light Curves
We present a new method for optimally extracting point-source time
variability information from a series of images. Differential photometry is
generally best accomplished by subtracting two images separated in time, since
this removes all constant objects in the field. By removing background sources
such as the host galaxies of supernovae, such subtractions make possible the
measurement of the proper flux of point-source objects superimposed on extended
sources. In traditional difference photometry, a single image is designated as
the ``template'' image and subtracted from all other observations. This
procedure does not take all the available information into account and for
sub-optimal template images may produce poor results. Given N total
observations of an object, we show how to obtain an estimate of the vector of
fluxes from the individual images using the antisymmetric matrix of flux
differences formed from the N(N-1)/2 distinct possible subtractions and provide
a prescription for estimating the associated uncertainties. We then demonstrate
how this method improves results over the standard procedure of designating one
image as a ``template'' and differencing against only that image.Comment: Accepted to AJ. To be published in November 2005 issue. 16 page, 2
figures, 2 tables. Source code available at
http://www.ctio.noao.edu/essence/nn2
Redshift-Independent Distances to Type Ia Supernovae
We describe a procedure for accurately determining luminosity distances to
Type Ia supernovae (SNe Ia) without knowledge of redshift. This procedure,
which may be used as an extension of any of the various distance determination
methods currently in use, is based on marginalizing over redshift, removing the
requirement of knowing a priori. We demonstrate that the Hubble diagram
scatter of distances measured with this technique is approximately equal to
that of distances derived from conventional redshift-specific methods for a set
of 60 nearby SNe Ia. This indicates that accurate distances for cosmological
SNe Ia may be determined without the requirement of spectroscopic redshifts,
which are typically the limiting factor for the number of SNe that modern
surveys can collect. Removing this limitation would greatly increase the number
of SNe for which current and future SN surveys will be able to accurately
measure distance. The method may also be able to be used for high- SNe Ia to
determine cosmological density parameters without redshift information.Comment: 12 pages, 3 figures, accepted for publication in Astrophysical
Journal Letter
The Rate of Type Ia Supernovae at High Redshift
We derive the rates of Type Ia supernovae (SNIa) over a wide range of
redshifts using a complete sample from the IfA Deep Survey. This sample of more
than 100 SNIa is the largest set ever collected from a single survey, and
therefore uniquely powerful for a detailed supernova rate (SNR) calculation.
Measurements of the SNR as a function of cosmological time offer a glimpse into
the relationship between the star formation rate (SFR) and Type Ia SNR, and may
provide evidence for the progenitor pathway. We observe a progressively
increasing Type Ia SNR between redshifts z~0.3-0.8. The Type Ia SNR
measurements are consistent with a short time delay (t~1 Gyr) with respect to
the SFR, indicating a fairly prompt evolution of SNIa progenitor systems. We
derive a best-fit value of SFR/SNR 580 h_70^(-2) M_solar/SNIa for the
conversion factor between star formation and SNIa rates, as determined for a
delay time of t~1 Gyr between the SFR and the Type Ia SNR. More complete
measurements of the Type Ia SNR at z>1 are necessary to conclusively determine
the SFR--SNR relationship and constrain SNIa evolutionary pathways.Comment: 37 pages, 9 figures, accepted for publication in Astrophysical
Journal. Figures 7-9 correcte
Cosmological Results from High-z Supernovae
The High-z Supernova Search Team has discovered and observed 8 new supernovae
in the redshift interval z=0.3-1.2. These independent observations, confirm the
result of Riess et al. (1998a) and Perlmutter et al. (1999) that supernova
luminosity distances imply an accelerating universe. More importantly, they
extend the redshift range of consistently observed SN Ia to z~1, where the
signature of cosmological effects has the opposite sign of some plausible
systematic effects. Consequently, these measurements not only provide another
quantitative confirmation of the importance of dark energy, but also constitute
a powerful qualitative test for the cosmological origin of cosmic acceleration.
We find a rate for SN Ia of 1.4+/-0.5E-04 h^3/Mpc^3/yr at a mean redshift of
0.5. We present distances and host extinctions for 230 SN Ia. These place the
following constraints on cosmological quantities: if the equation of state
parameter of the dark energy is w=-1, then H0 t0 = 0.96+/-0.04, and O_l - 1.4
O_m = 0.35+/-0.14. Including the constraint of a flat Universe, we find O_m =
0.28+/-0.05, independent of any large-scale structure measurements. Adopting a
prior based on the 2dF redshift survey constraint on O_m and assuming a flat
universe, we find that the equation of state parameter of the dark energy lies
in the range -1.48-1,
we obtain w<-0.73 at 95% confidence. These constraints are similar in precision
and in value to recent results reported using the WMAP satellite, also in
combination with the 2dF redshift survey.Comment: 50 pages, AAS LateX, 15 figures, 15 tables. Accepted for publication
by Astrophysical Journa
Supernova Cosmology and the ESSENCE project
The proper usage of Type Ia supernovae (SNe Ia) as distance indicators has
revolutionized cosmology, and added a new dominant component to the energy
density of the Universe, dark energy. Following the discovery and confirmation
era, the currently ongoing SNe Ia surveys aim to determine the properties of
the dark energy. ESSENCE is a five year ground-based supernova survey aimed at
finding and characterizing 200 SNe Ia in the redshift domain z=[0.2-0.8]. The
goal of the project is to put constraints on the equation of state parameter,
w, of the dark energy with an accuracy of <10%. This paper presents these
ongoing efforts in the context of the current developments in observational
cosmology.Comment: Submitted to EPS1
Imaging and Demography of the Host Galaxies of High-Redshift Type Ia Supernovae
We present the results of a study of the host galaxies of high redshift Type
Ia supernovae (SNe Ia). We provide a catalog of 18 hosts of SNe Ia observed
with the Hubble Space Telescope (HST) by the High-z Supernova Search Team
(HZT), including images, scale-lengths, measurements of integrated (Hubble
equivalent) BVRIZ photometry in bands where the galaxies are brighter than m ~
25 mag, and galactocentric distances of the supernovae. We compare the
residuals of SN Ia distance measurements from cosmological fits to measurable
properties of the supernova host galaxies that might be expected to correlate
with variable properties of the progenitor population, such as host galaxy
color and position of the supernova. We find mostly null results; the current
data are generally consistent with no correlations of the distance residuals
with host galaxy properties in the redshift range 0.42 < z < 1.06. Although a
subsample of SN hosts shows a formally significant (3-sigma) correlation
between apparent V-R host color and distance residuals, the correlation is not
consistent with the null results from other host colors probed by our largest
samples. There is also evidence for the same correlations between SN Ia
properties and host type at low redshift and high redshift. These similarities
support the current practice of extrapolating properties of the nearby
population to high redshifts pending more robust detections of any correlations
between distance residuals from cosmological fits and host properties.Comment: 35 pages, 12 figures, 4 tables, accepted for publication in A
Using paired-end sequences to optimise parameters for alignment of sequence reads against related genomes
<p>Abstract</p> <p>Background</p> <p>The advent of cheap high through-put sequencing methods has facilitated low coverage skims of a large number of organisms. To maximise the utility of the sequences, assembly into contigs and then ordering of those contigs is required. Whilst sequences can be assembled into contigs <it>de novo</it>, using assembled genomes of closely related organisms as a framework can considerably aid the process. However, the preferred search programs and parameters that will optimise the sensitivity and specificity of the alignments between the sequence reads and the framework genome(s) are not necessarily obvious. Here we demonstrate a process that uses paired-end sequence reads to choose an optimal program and alignment parameters.</p> <p>Results</p> <p>Unlike two single fragment reads, in paired-end sequence reads, such as BAC-end sequences, the two sequences in the pair have a known positional relationship in the original genome. This provides an additional level of confidence over match scores and e-values in the accuracy of the positional assignment of the reads in the comparative genome. Three commonly used sequence alignment programs: MegaBLAST, Blastz and PatternHunter were used to align a set of ovine BAC-end sequences against the equine genome assembly. A range of different search parameters, with a particular focus on contiguous and discontiguous seeds, were used for each program. The number of reads with a hit and the number of read pairs with hits for the two end sequences in the tail-to-tail paired-end configuration were plotted relative to the theoretical maximum expected curve. Of the programs tested, MegaBLAST with short contiguous seed lengths (word size 8-11) performed best in this particular task. In addition the data also provides estimates of the false positive and false negative rates, which can be used to determine the appropriate values of additional parameters, such as score cut-off, to balance sensitivity and specificity. To determine whether the approach also worked for the alignment of shorter reads, the first 240 bases of each BAC end sequence were also aligned to the equine genome. Again, contiguous MegaBLAST performed the best in optimising the sensitivity and specificity with which sheep BAC end reads map to the equine and bovine genomes.</p> <p>Conclusions</p> <p>Paired-end reads, such as BAC-end sequences, provide an efficient mechanism to optimise sequence alignment parameters, for example for comparative genome assemblies, by providing an objective standard to evaluate performance.</p
Using Bacterial Artificial Chromosomes to Refine Genome Assemblies and to Build Virtual Genomes
Spectroscopy of High-Redshift Supernovae from the ESSENCE Project: The First Two Years
We present the results of spectroscopic observations of targets discovered
during the first two years of the ESSENCE project. The goal of ESSENCE is to
use a sample of ~200 Type Ia supernovae (SNe Ia) at moderate redshifts (0.2 < z
< 0.8) to place constraints on the equation of state of the Universe.
Spectroscopy not only provides the redshifts of the objects, but also confirms
that some of the discoveries are indeed SNe Ia. This confirmation is critical
to the project, as techniques developed to determine luminosity distances to
SNe Ia depend upon the knowledge that the objects at high redshift are the same
as the ones at low redshift. We describe the methods of target selection and
prioritization, the telescopes and detectors, and the software used to identify
objects. The redshifts deduced from spectral matching of high-redshift SNe Ia
with low-redshift SNe Ia are consistent with those determined from host-galaxy
spectra. We show that the high-redshift SNe Ia match well with low-redshift
templates. We include all spectra obtained by the ESSENCE project, including 52
SNe Ia, 5 core-collapse SNe, 12 active galactic nuclei, 19 galaxies, 4 possibly
variable stars, and 16 objects with uncertain identifications.Comment: 38 pages, 9 figures (many with multiple parts), submitted to A
- …
