314 research outputs found
Experience of adopting faecal immunochemical testing to meet the NICE colorectal cancer referral criteria for low-risk symptomatic primary care patients in Oxfordshire, UK
Objective To compare the diagnostic performance of guaiac faecal occult blood (gFOB) testing with faecal immunochemical test (FIT) in a low-risk symptomatic primary care population to provide objective data on which to base local referral guidelines. Design Stool samples from routine primary care practice sent for faecal occult blood testing were analysed by a standard gFOB method and the HM-JACKarc FIT between January and March 2016. Symptoms described on the test request were recorded. Patients were followed up over 21 months for evidence of serious gastrointestinal pathology including colorectal adenocarcinoma. Results In 238 patients, the sensitivity and specificity for colorectal adenocarcinoma detection using gFOB were 85.7% and 65.8%, respectively, compared with 85.7% and 89.2% for FIT. The positive predictive value (PPV) for gFOB was 7.1% and negative predictive value (NPV) was 99.3%. Comparatively, the PPV for FIT was 19.4% and NPV 99.5%. The improved performance of FIT over gFOB was due to a lower false positive rate (10.8 vs 34.2, p≤0.01) with no increase in the false negatives rate. For any significant colorectal disease, the PPV for FIT increased to 35.5% with a reduction in NPV to 95.7%. Conclusion In this low-risk symptomatic patient group, the proportion of samples considered positive by FIT was considerably lower than gFOB with the same rate of colorectal adenocarcinoma detection. One in three of those with positive FIT had a significant colorectal disease. This supports National Institute of Health and Care Excellence recommendation that FIT can be reliably used as a triage test in primary care without overburdening endoscopy resources
Recommended from our members
Erratum: Author Correction: Identification of genes required for eye development by high-throughput screening of mouse knockouts.
[This corrects the article DOI: 10.1038/s42003-018-0226-0.]
A comparison of respiratory particle emission rates at rest and while speaking or exercising
BackgroundThe coronavirus disease-19 (COVID-19) pandemic led to the prohibition of group-based exercise and the cancellation of sporting events. Evaluation of respiratory aerosol emissions is necessary to quantify exercise-related transmission risk and inform mitigation strategies.MethodsAerosol mass emission rates are calculated from concurrent aerosol and ventilation data, enabling absolute comparison. An aerodynamic particle sizer (0.54–20 μm diameter) samples exhalate from within a cardiopulmonary exercise testing mask, at rest, while speaking and during cycle ergometer-based exercise. Exercise challenge testing is performed to replicate typical gym-based exercise and very vigorous exercise, as determined by a preceding maximally exhaustive exercise test.ResultsWe present data from 25 healthy participants (13 males, 12 females; 36.4 years). The size of aerosol particles generated at rest and during exercise is similar (unimodal ~0.57–0.71 µm), whereas vocalization also generated aerosol particles of larger size (i.e. was bimodal ~0.69 and ~1.74 µm). The aerosol mass emission rate during speaking (0.092 ng s−1; minute ventilation (VE) 15.1 L min−1) and vigorous exercise (0.207 ng s−1, p = 0.726; VE 62.6 L min−1) is similar, but lower than during very vigorous exercise (0.682 ng s−1, p < 0.001; VE 113.6 L min−1).ConclusionsVocalisation drives greater aerosol mass emission rates, compared to breathing at rest. Aerosol mass emission rates in exercise rise with intensity. Aerosol mass emission rates during vigorous exercise are no different from speaking at a conversational level. Mitigation strategies for airborne pathogens for non-exercise-based social interactions incorporating vocalisation, may be suitable for the majority of exercise settings. However, the use of facemasks when exercising may be less effective, given the smaller size of particles produced
Comparisons of Aerosol Generation Across Different Musical Instruments and Loudness
Highlights•Aerosol number and mass concentrations measured during musical instrument playing.•A 1 dBA increase in sound pressure level yields ∼10% increase in number concentration.•Loudness of playing explains some but not all differences across instruments.•Musical instrument playing size distributions are consistent with those of breathing.•Simple songs sufficient to characterise aerosol emission during actual performance.AbstractRespiratory aerosols can serve as vectors for disease transmission, and aerosol emission is highly activity-dependent. COVID-19 severely impacted the performing arts due to concerns about disease spread by respiratory aerosols and droplets generated during singing and playing musical instruments. Aerosol generation from woodwind and brass performance is less understood compared to singing due to uncertainty about how the diverse range of musical instruments may impact respiratory aerosol concentrations and size distributions. Here, aerosol number and mass concentrations along with size distributions were measured for breathing, speaking, and playing four different woodwind and brass instruments by 23 professional instrumentalists. We find that a 1 dBA increase in sound pressure level corresponds to a ∼10% increase in aerosol number concentration. The aerosol size distribution is consistent with that of breathing. Differences in aerosol emission across musical instruments can be partly explained by the loudness of performance. Measuring aerosol generation from single notes or simple songs may be sufficient to characterise the aerosol emission range during actual performance, provided a range of loudnesses are accessed. These results provide insight into the factors contributing to aerosol emission during musical performance and facilitate risk assessments associated with infectious respiratory disease transmission in the performing arts
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Early Clinical Variables Associated With Refractory Convulsive Status Epilepticus in Children
BACKGROUND AND OBJECTIVES: The objective of this study was to determine patient-specific factors known proximate to the presentation to emergency care associated with the development of refractory convulsive status epilepticus (RSE) in children.
METHODS: An observational case-control study was conducted comparing pediatric patients (1 month-21 years) with convulsive SE whose seizures stopped after benzodiazepine (BZD) and a single second-line antiseizure medication (ASM) (responsive established status epilepticus [rESE]) with patients requiring more than a BZD and a single second-line ASM to stop their seizures (RSE). These subpopulations were obtained from the pediatric Status Epilepticus Research Group study cohort. We explored clinical variables that could be acquired early after presentation to emergency medical services with univariate analysis of the raw data. Variables with
RESULTS: We compared data from a total of 595 episodes of pediatric SE. Univariate analysis demonstrated no differences in time to the first BZD (RSE 16 minutes [IQR 5-45]; rESE 18 minutes [IQR 6-44],
DISCUSSION: Time to initial BZD or second-line ASM was not associated with progression to RSE in our cohort of patients with rESE. A family history of seizures and a prescription for rectal diazepam were associated with a decreased likelihood of progression to RSE. Early attainment of these variables may help care for pediatric rESE in a more patient-tailored manner.
CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that patient and clinical factors may predict RSE in children with convulsive seizures
Identification of genes required for eye development by high-throughput screening of mouse knockouts
International audienc
Identification of genes required for eye development by high-throughput screening of mouse knockouts.
Despite advances in next generation sequencing technologies, determining the genetic basis of ocular disease remains a major challenge due to the limited access and prohibitive cost of human forward genetics. Thus, less than 4,000 genes currently have available phenotype information for any organ system. Here we report the ophthalmic findings from the International Mouse Phenotyping Consortium, a large-scale functional genetic screen with the goal of generating and phenotyping a null mutant for every mouse gene. Of 4364 genes evaluated, 347 were identified to influence ocular phenotypes, 75% of which are entirely novel in ocular pathology. This discovery greatly increases the current number of genes known to contribute to ophthalmic disease, and it is likely that many of the genes will subsequently prove to be important in human ocular development and disease
- …
