727 research outputs found

    Matching Image Sets via Adaptive Multi Convex Hull

    Get PDF
    Traditional nearest points methods use all the samples in an image set to construct a single convex or affine hull model for classification. However, strong artificial features and noisy data may be generated from combinations of training samples when significant intra-class variations and/or noise occur in the image set. Existing multi-model approaches extract local models by clustering each image set individually only once, with fixed clusters used for matching with various image sets. This may not be optimal for discrimination, as undesirable environmental conditions (eg. illumination and pose variations) may result in the two closest clusters representing different characteristics of an object (eg. frontal face being compared to non-frontal face). To address the above problem, we propose a novel approach to enhance nearest points based methods by integrating affine/convex hull classification with an adapted multi-model approach. We first extract multiple local convex hulls from a query image set via maximum margin clustering to diminish the artificial variations and constrain the noise in local convex hulls. We then propose adaptive reference clustering (ARC) to constrain the clustering of each gallery image set by forcing the clusters to have resemblance to the clusters in the query image set. By applying ARC, noisy clusters in the query set can be discarded. Experiments on Honda, MoBo and ETH-80 datasets show that the proposed method outperforms single model approaches and other recent techniques, such as Sparse Approximated Nearest Points, Mutual Subspace Method and Manifold Discriminant Analysis.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Multi-Action Recognition via Stochastic Modelling of Optical Flow and Gradients

    Get PDF
    In this paper we propose a novel approach to multi-action recognition that performs joint segmentation and classification. This approach models each action using a Gaussian mixture using robust low-dimensional action features. Segmentation is achieved by performing classification on overlapping temporal windows, which are then merged to produce the final result. This approach is considerably less complicated than previous methods which use dynamic programming or computationally expensive hidden Markov models (HMMs). Initial experiments on a stitched version of the KTH dataset show that the proposed approach achieves an accuracy of 78.3%, outperforming a recent HMM-based approach which obtained 71.2%

    The compression theorem I

    Full text link
    This the first of a set of three papers about the Compression Theorem: if M^m is embedded in Q^q X R with a normal vector field and if q-m > 0, then the given vector field can be straightened (ie, made parallel to the given R direction) by an isotopy of M and normal field in Q X R. The theorem can be deduced from Gromov's theorem on directed embeddings [M Gromov, Partial differential relations, Springer-Verlag (1986); 2.4.5 C'] and is implicit in the preceeding discussion. Here we give a direct proof that leads to an explicit description of the finishing embedding. In the second paper in the series we give a proof in the spirit of Gromov's proof and in the third part we give applications.Comment: This is a shortened version of "The compression theorem": applications have been omitted and will be published as part III. For a preliminary version of part III, see section 5 onwards of version 2 of this paper. This version (v3) is published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol5/paper14.abs.htm

    Sparse Coding on Symmetric Positive Definite Manifolds using Bregman Divergences

    Full text link
    This paper introduces sparse coding and dictionary learning for Symmetric Positive Definite (SPD) matrices, which are often used in machine learning, computer vision and related areas. Unlike traditional sparse coding schemes that work in vector spaces, in this paper we discuss how SPD matrices can be described by sparse combination of dictionary atoms, where the atoms are also SPD matrices. We propose to seek sparse coding by embedding the space of SPD matrices into Hilbert spaces through two types of Bregman matrix divergences. This not only leads to an efficient way of performing sparse coding, but also an online and iterative scheme for dictionary learning. We apply the proposed methods to several computer vision tasks where images are represented by region covariance matrices. Our proposed algorithms outperform state-of-the-art methods on a wide range of classification tasks, including face recognition, action recognition, material classification and texture categorization

    Multi-region probabilistic histograms for robust and scalable identity inference

    Get PDF
    We propose a scalable face matching algorithm capable of dealing with faces subject to several concurrent and uncontrolled factors, such as variations in pose, expression, illumination, resolution, as well as scale and misalignment problems. Each face is described in terms of multi-region probabilistic histograms of visual words, followed by a normalised distance calculation between the histograms of two faces. We also propose a fast histogram approximation method which dramatically reduces the computational burden with minimal impact on discrimination performance. Experiments on the “Labeled Faces in the Wild” dataset (unconstrained environments) as well as FERET (controlled variations) show that the proposed algorithm obtains performance on par with a more complex method and displays a clear advantage over predecessor systems. Furthermore, the use of multiple regions (as opposed to a single overall region) improves accuracy in most cases, especially when dealing with illumination changes and very low resolution images. The experiments also show that normalised distances can noticeably improve robustness by partially counteracting the effects of image variations

    Extrinsic Methods for Coding and Dictionary Learning on Grassmann Manifolds

    Get PDF
    Sparsity-based representations have recently led to notable results in various visual recognition tasks. In a separate line of research, Riemannian manifolds have been shown useful for dealing with features and models that do not lie in Euclidean spaces. With the aim of building a bridge between the two realms, we address the problem of sparse coding and dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping. This in turn enables us to extend two sparse coding schemes to Grassmann manifolds. Furthermore, we propose closed-form solutions for learning a Grassmann dictionary, atom by atom. Lastly, to handle non-linearity in data, we extend the proposed Grassmann sparse coding and dictionary learning algorithms through embedding into Hilbert spaces. Experiments on several classification tasks (gender recognition, gesture classification, scene analysis, face recognition, action recognition and dynamic texture classification) show that the proposed approaches achieve considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelized Affine Hull Method and graph-embedding Grassmann discriminant analysis.Comment: Appearing in International Journal of Computer Visio
    corecore