727 research outputs found
Matching Image Sets via Adaptive Multi Convex Hull
Traditional nearest points methods use all the samples in an image set to
construct a single convex or affine hull model for classification. However,
strong artificial features and noisy data may be generated from combinations of
training samples when significant intra-class variations and/or noise occur in
the image set. Existing multi-model approaches extract local models by
clustering each image set individually only once, with fixed clusters used for
matching with various image sets. This may not be optimal for discrimination,
as undesirable environmental conditions (eg. illumination and pose variations)
may result in the two closest clusters representing different characteristics
of an object (eg. frontal face being compared to non-frontal face). To address
the above problem, we propose a novel approach to enhance nearest points based
methods by integrating affine/convex hull classification with an adapted
multi-model approach. We first extract multiple local convex hulls from a query
image set via maximum margin clustering to diminish the artificial variations
and constrain the noise in local convex hulls. We then propose adaptive
reference clustering (ARC) to constrain the clustering of each gallery image
set by forcing the clusters to have resemblance to the clusters in the query
image set. By applying ARC, noisy clusters in the query set can be discarded.
Experiments on Honda, MoBo and ETH-80 datasets show that the proposed method
outperforms single model approaches and other recent techniques, such as Sparse
Approximated Nearest Points, Mutual Subspace Method and Manifold Discriminant
Analysis.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV),
201
Multi-Action Recognition via Stochastic Modelling of Optical Flow and Gradients
In this paper we propose a novel approach to multi-action recognition that
performs joint segmentation and classification. This approach models each
action using a Gaussian mixture using robust low-dimensional action features.
Segmentation is achieved by performing classification on overlapping temporal
windows, which are then merged to produce the final result. This approach is
considerably less complicated than previous methods which use dynamic
programming or computationally expensive hidden Markov models (HMMs). Initial
experiments on a stitched version of the KTH dataset show that the proposed
approach achieves an accuracy of 78.3%, outperforming a recent HMM-based
approach which obtained 71.2%
The compression theorem I
This the first of a set of three papers about the Compression Theorem: if M^m
is embedded in Q^q X R with a normal vector field and if q-m > 0, then the
given vector field can be straightened (ie, made parallel to the given R
direction) by an isotopy of M and normal field in Q X R. The theorem can be
deduced from Gromov's theorem on directed embeddings [M Gromov, Partial
differential relations, Springer-Verlag (1986); 2.4.5 C'] and is implicit in
the preceeding discussion. Here we give a direct proof that leads to an
explicit description of the finishing embedding. In the second paper in the
series we give a proof in the spirit of Gromov's proof and in the third part we
give applications.Comment: This is a shortened version of "The compression theorem":
applications have been omitted and will be published as part III. For a
preliminary version of part III, see section 5 onwards of version 2 of this
paper. This version (v3) is published by Geometry and Topology at
http://www.maths.warwick.ac.uk/gt/GTVol5/paper14.abs.htm
Sparse Coding on Symmetric Positive Definite Manifolds using Bregman Divergences
This paper introduces sparse coding and dictionary learning for Symmetric
Positive Definite (SPD) matrices, which are often used in machine learning,
computer vision and related areas. Unlike traditional sparse coding schemes
that work in vector spaces, in this paper we discuss how SPD matrices can be
described by sparse combination of dictionary atoms, where the atoms are also
SPD matrices. We propose to seek sparse coding by embedding the space of SPD
matrices into Hilbert spaces through two types of Bregman matrix divergences.
This not only leads to an efficient way of performing sparse coding, but also
an online and iterative scheme for dictionary learning. We apply the proposed
methods to several computer vision tasks where images are represented by region
covariance matrices. Our proposed algorithms outperform state-of-the-art
methods on a wide range of classification tasks, including face recognition,
action recognition, material classification and texture categorization
Multi-region probabilistic histograms for robust and scalable identity inference
We propose a scalable face matching algorithm capable of dealing with faces subject to several concurrent and uncontrolled factors, such as variations in pose, expression, illumination, resolution, as well as scale and misalignment problems. Each face is described in terms of multi-region probabilistic histograms of visual words, followed by a normalised distance calculation between the histograms of two faces. We also propose a fast histogram approximation method which dramatically reduces the computational burden with minimal impact on discrimination performance. Experiments on the “Labeled Faces in the Wild” dataset (unconstrained environments) as well as FERET (controlled variations) show that the proposed algorithm obtains performance on par with a more complex method and displays a clear advantage over predecessor systems. Furthermore, the use of multiple regions (as opposed to a single overall region) improves accuracy in most cases, especially when dealing with illumination changes and very low resolution images. The experiments also show that normalised distances can noticeably improve robustness by partially counteracting the effects of image variations
Extrinsic Methods for Coding and Dictionary Learning on Grassmann Manifolds
Sparsity-based representations have recently led to notable results in
various visual recognition tasks. In a separate line of research, Riemannian
manifolds have been shown useful for dealing with features and models that do
not lie in Euclidean spaces. With the aim of building a bridge between the two
realms, we address the problem of sparse coding and dictionary learning over
the space of linear subspaces, which form Riemannian structures known as
Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into
the space of symmetric matrices by an isometric mapping. This in turn enables
us to extend two sparse coding schemes to Grassmann manifolds. Furthermore, we
propose closed-form solutions for learning a Grassmann dictionary, atom by
atom. Lastly, to handle non-linearity in data, we extend the proposed Grassmann
sparse coding and dictionary learning algorithms through embedding into Hilbert
spaces.
Experiments on several classification tasks (gender recognition, gesture
classification, scene analysis, face recognition, action recognition and
dynamic texture classification) show that the proposed approaches achieve
considerable improvements in discrimination accuracy, in comparison to
state-of-the-art methods such as kernelized Affine Hull Method and
graph-embedding Grassmann discriminant analysis.Comment: Appearing in International Journal of Computer Visio
- …
