295 research outputs found
Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change?
International audienceThis paper investigates the uncertainty of hydrological predictions due to rainfall-runoff model parameters in the context of climate change impact studies. Two sources of uncertainty were considered: (i) the dependence of the optimal parameter set on the climate characteristics of the calibration period and (ii) the use of several posterior parameter sets over a given calibration period. The first source of uncertainty often refers to the lack of model robustness, while the second one refers to parameter uncertainty estimation based on Bayesian inference. Two rainfall-runoff models were tested on 89 catchments in northern and central France. The two sources of uncertainty were assessed in the past observed period and in future climate conditions. The results show that, given the evaluation approach followed here, the lack of robustness was the major source of variability in streamflow projections in future climate conditions for the two models tested. The hydrological projections generated by an ensemble of posterior parameter sets are close to those associated with the optimal set. Therefore, it seems that greater effort should be invested in improving the robustness of models for climate change impact studies, especially by developing more suitable model structures and proposing calibration procedures that increase their robustness
On the visual detection of non-natural records in streamflow time series: challenges and impacts
Large datasets of long-term streamflow measurements are widely used to infer and model hydrological processes. However, streamflow measurements may
suffer from what users can consider anomalies, i.e. non-natural records that may be erroneous streamflow values or anthropogenic influences that
can lead to misinterpretation of actual hydrological processes. Since identifying anomalies is time consuming for humans, no study has investigated
their proportion, temporal distribution, and influence on hydrological indicators over large datasets. This study summarizes the results of a large
visual inspection campaign of 674 streamflow time series in France made by 43 evaluators, who were asked to identify anomalies falling under five
categories, namely, linear interpolation, drops, noise, point anomalies, and other. We examined the evaluators' individual behaviour in terms of
severity and agreement with other evaluators, as well as the temporal distributions of the anomalies and their influence on commonly used
hydrological indicators. We found that inter-evaluator agreement was surprisingly low, with an average of 12 % of overlapping periods reported as
anomalies. These anomalies were mostly identified as linear interpolation and noise, and they were more frequently reported during the low-flow
periods in summer. The impact of cleaning data from the identified anomaly values was higher on low-flow indicators than on high-flow indicators,
with change rates lower than 5 % most of the time. We conclude that the identification of anomalies in streamflow time series is highly dependent
on the aims and skills of each evaluator, which raises questions about the best practices to adopt for data cleaning.</p
The IAHS Science for Solutions decade, with Hydrology Engaging Local People IN one Global world (HELPING)
The new scientific decade (2023-2032) of the International Association of Hydrological Sciences (IAHS) aims at searching for sustainable solutions to undesired water conditions – whether it be too little, too much or too polluted. Many of the current issues originate from global change, while solutions to problems must embrace local understanding and context. The decade will explore the current water crises by searching for actionable knowledge within three themes: global and local interactions, sustainable solutions and innovative cross-cutting methods. We capitalise on previous IAHS Scientific Decades shaping a trilogy; from Hydrological Predictions (PUB) to Change and Interdisciplinarity (Panta Rhei) to Solutions (HELPING). The vision is to solve fundamental water-related environmental and societal problems by engaging with other disciplines and local stakeholders. The decade endorses mutual learning and co-creation to progress towards UN sustainable development goals. Hence, HELPING is a vehicle for putting science in action, driven by scientists working on local hydrology in coordination with local, regional, and global processes
Première modélisation des débits générés par la tempête Alex (octobre 2020) dans les Alpes-Maritimes
Ce rapport vise à présenter la méthodologie utilisée pour modéliser des débits générés par la tempête Alex au droit de 105 exutoires situés dans les bassins du Var amont, de la Tinée, de la Vésubie, de la Bévéra et de la Roya. Une comparaison des débits simulés avec ceux estimés au droit de quatre stations hydrométriques de la DREAL PACA (la Tinée à Tournefort, la Vésubie à Utelle, la Bévéra à Sospel et la Roya à Tende) est réalisée. Il s’agit de résultats préliminaires, à consolider avec une analyse de sensibilité et une comparaison avec d’autres modèles plus complexes et potentiellement plus « réalistes »
Changement climatique et risque hydrologique : évaluation de la méthode SCHADEX en contexte non-stationnaire
Since 2006, Électricité de France (EDF) applies a new hydro-climatological approach of extreme rainfall and flood predetermination - the SCHADEX method - for the design of dam spillways. In a context of potential increase of extreme event intensity and frequency due to climate change, the use of the SCHADEX method in non-stationary conditions is a main interest topic for EDF hydrologists. Thus, the scientific goal of this Ph.D. thesis work has been to evaluate the ability of the SCHADEX method to take into account future climate simulations for the estimation of future extreme floods. The recognized inabilities of climate models and downscaling methods to simulate (extreme) rainfall distribution at the catchment-scale have been avoided, by developing and testing new methodological approaches. Moreover, the decomposition of the flood-producing factors proposed by the SCHADEX method has been used for considering different simulated climatic evolutions and for quantifying the relative impact of these factors on the extreme flood estimation. First, the SCHADEX method has been applied in present time over different climatic contexts (France, Austria, Canada and Norway), thanks to several colorations with academic and industrial partners. A sensitivity analysis allowed to quantify the extreme flood estimation sensitivity to rainfall hazard, catchment saturation hazard and rainfall-runoff transformation, independently. The results showed a large sensitivity of SCHADEX flood estimations to the rainfall hazard and to the rainfall-runoff transformation. Using the sensitivity analysis results, tests have been done in order to estimate the future evolution of "key" variables previously identified. New climate model outputs (done within the CMIP5 project) have been analyzed and used for determining future frequency of rainfall events and future catchment saturation conditions. Considering these simulated evolutions within the SCHADEX method lead to a significant decrease of simulated extreme floods. In order to predict the future intensity of rainfall events with air temperature simulated series, tests have been performed on several hundred of French catchment rainfall series, trying to link observed air temperature with observed rainfall event intensity. The results obtained show a mean heavy rainfall intensity increase of 6% per degree of air temperature rise, at the daily timescale. Nevertheless, supplementary tests are needed in order to estimate the timestep and the temperature range at which this rainfall event intensity increase is valid. Finally, these different future evolutions have all been used as inputs of the SCHADEX method. This last test showed the difficulty to quantify the impact of climate change on extreme floods due to a combination of extreme flood decrease factors (extreme flood decrease due both to future rainfall event frequency and catchment saturation condition evolution) and extreme flood increase factor (extreme flood increase due to an increase of future rainfall event intensity ). Even if the extreme flood estimation sensitivity analysis has raised numerous questions about the rainfall-runoff model calibration within the SCHADEX method, quantifying the future rainfall event intensity is the key question for the extreme rainfall and flood predetermination in a climate change context.Depuis 2006, Électricité de France (EDF) applique une nouvelle approche hydroclimatologique de prédétermination des pluies et crues extrêmes, la méthode SCHADEX, pour le dimensionnement des évacuateurs de crues de ses barrages. Dans un contexte de changement climatique global, potentiellement amplificateur de la fréquence et de l'intensité des événements extrêmes, l'application de la méthode SCHADEX en conditions non-stationnaires est un sujet d'intérêt majeur pour les hydrologues d'EDF. Aussi, l'objectif scientifique des travaux de thèse entrepris a été d'évaluer la capacité de la méthode SCHADEX à prendre en compte l'information contenue dans les simulations du climat futur, pour estimer les crues extrêmes du futur. Les difficultés avérées des modèles climatiques et des méthodes de descente d'échelles à simuler des distributions de pluies courantes et extrêmes à l'échelle d'un bassin versant ont été contournées, en développant et en testant de nouvelles approches méthodologiques. De plus, la décomposition des processus générateurs de crues extrêmes proposée par la méthode SCHADEX a été utilisée afin d'incorporer différentes évolutions climatiques simulées, et de quantifier l'impact relatif de ces processus sur l'estimation de débits extrêmes. La méthode SCHADEX a tout d'abord été appliquée en temps présent dans différents contextes climatiques (France, Autriche, Canada et Norvège), grâce à des collaborations avec plusieurs partenaires académiques et industriels. Une analyse de sensibilité des estimations de crues extrêmes à la variabilité climatique observée a été réalisée sur plusieurs bassins versants. Cette analyse a permis de quantifier, de manière indépendante, le degré de sensibilité des estimations à l'aléa pluie, à la saturation des bassins versants et à la transformation pluie-débit. Les résultats obtenus ont ainsi révélé la grande sensibilité des estimations SCHADEX à l'aléa pluie forte et à la transformation pluie-débit, réalisée par le modèle hydrologique. S'appuyant sur les résultats de l'analyse de sensibilité, des travaux ont ensuite été réalisés afin d'estimer les évolutions futures des variables clés préalablement identifiées. Des sorties récentes de modèles climatiques (réalisées dans le cadre du projet CMIP5) ont été analysées, et ont permis de déterminer des fréquences d'occurrences futures d'épisodes pluvieux, ainsi que des conditions futures de saturation des bassins versants. L'incorporation de ces séries au sein de la méthode SCHADEX entraîne une diminution non négligeable des débits de crues extrêmes estimés. Dans le but de prédire l'intensité des pluies futures à partir de simulations de températures de l'air, des tests ont été entrepris sur plusieurs centaines de pluies de bassin françaises, afin de relier les températures de l'air observées avec les intensités de pluies extrêmes observées. Les résultats obtenus révèlent une augmentation moyenne de 6% des quantiles de pluies extrêmes par degré d'augmentation de la température de l'air, au pas de temps journalier. Néanmoins, des tests supplémentaires sont nécessaires pour déterminer sur quelles gammes de températures, et à quel pas de temps cette augmentation est valable. Enfin, ces différentes évolutions futures ont été toutes incorporées au sein de la méthode SCHADEX. Cet exercice final a montré la difficulté de quantifier l'impact du changement climatique sur les crues extrêmes, du fait de processus qui s'additionnent (diminution des débits extrêmes due à la fois à l'évolution des fréquences d'occurrences d'épisodes pluvieux et à l'évolution des conditions de saturation des bassins versants) et d'autres qui s'opposent (augmentation des débits extrêmes due à l'augmentation de l'intensité future des épisodes pluvieux). Si l'analyse de sensibilité des estimations de crues extrêmes a soulevé de nombreuses questions relatives au calage du modèle hydrologique utilisé dans la méthode SCHADEX, la quantification de l'intensité des épisodes pluvieux futurs constitue l'enjeu clé de la prédétermination des pluies et crues extrêmes en contexte de changement climatique
Panofsky (Erwin). Abbot Suger, on the abbey church o f St-Denis and its art treasures
Brigode Simon. Panofsky (Erwin). Abbot Suger, on the abbey church o f St-Denis and its art treasures. In: Revue belge de philologie et d'histoire, tome 26, fasc. 3, 1948. pp. 679-680
- …
