21 research outputs found
Quorum sensing signalling alters virulence potential and population dynamics in complex microbiome-host interactomes
Despite the discovery of the first N-acyl homoserine lactone (AHL) based quorum sensing (QS) in the marine environment, relatively little is known about the abundance, nature and diversity of AHL QS systems in this diverse ecosystem. Establishing the prevalence and diversity of AHL QS systems and how they may influence population dynamics within the marine ecosystem, may give a greater insight into the evolution of AHLs as signaling molecules in this important and largely unexplored niche. Microbiome profiling of Stelletta normani and BD1268 sponge samples identified several potential QS active genera. Subsequent biosensor-based screening of a library of 650 marine sponge bacterial isolates identified 10 isolates that could activate at least one of three AHL biosensor strains. Each was further validated and profiled by Ultra-High Performance Liquid Chromatography Mass Spectrometry, with AHLs being detected in 8 out of 10 isolate extracts. Co-culture of QS active isolates with S. normani marine sponge samples led to the isolation of genera such as Pseudomonas and Paenibacillus, both of which were low abundance in the S. normani microbiome. Surprisingly however, addition of AHLs to isolates harvested following co-culture did not measurably affect either growth or biofilm of these strains. Addition of supernatants from QS active strains did however impact significantly on biofilm formation of the marine Bacillus sp. CH8a sporeforming strain suggesting a role for QS systems in moderating the microbemicrobe interaction in marine sponges. Genome sequencing and phylogenetic analysis of a QS positive Psychrobacter isolate identified several QS associated systems, although no classical QS synthase gene was identified. The stark contrast between the biodiverse sponge microbiome and the relatively limited diversity that was observed on standard culture media, even in the presence of QS active compounds, serves to underscore the extent of diversity that remains to be brought into culture
Quorum sensing of microalgae associated marine Ponticoccus sp. PD-2 and its algicidal function regulation
Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool
Marine sponges host a wide diversity of microorganisms, which have versatile modes of carbon and energy metabolism. In this study we describe the major lithoheterotrophic and autotrophic processes in 21 microbial sponge-associated phyla using novel and existing genomic and transcriptomic datasets. We show that the main microbial carbon fixation pathways in sponges are the Calvin–Benson–Bassham cycle (energized by light in Cyanobacteria, by sulfur compounds in two orders of Gammaproteobacteria, and by a wide range of compounds in filamentous Tectomicrobia), the reductive tricarboxylic acid cycle (used by Nitrospirota), and the 3-hydroxypropionate/4-hydroxybutyrate cycle (active in Thaumarchaeota). Further, we observed that some sponge symbionts, in particular Acidobacteria, are capable of assimilating carbon through anaplerotic processes. The lithoheterotrophic lifestyle was widespread and CO oxidation is the main energy source for sponge lithoheterotrophs. We also suggest that the molybdenum-binding subunit of dehydrogenase (encoded by coxL) likely evolved to benefit also organoheterotrophs that utilize various organic substrates. Genomic potential does not necessarily inform on actual contribution of autotrophs to light and dark carbon budgets. Radioisotope assays highlight variability in the relative contributions of photo- and chemoautotrophs to the total carbon pool across different sponge species, emphasizing the importance of validating genomic potential with physiology experimentation
Correction: Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool
Rethinking symbiotic metabolism: trophic strategies in the microbiomes of different sponge species
AbstractIn this study we describe the major lithoheterotrophic and autotrophic processes in 21 microbial sponge-associated phyla using novel and existing genomic and transcriptomic datasets. We show that a single gene family, molybdenum-binding subunit of dehydrogenase (coxL), likely evolved to benefit both lithoheterotrophic and organoheterotrophic symbionts, through adaptation to different inorganic and organic substrates. We show the main microbial carbon fixation pathways in sponges are restricted to specialized symbiotic lineages within five phyla. We also propose that sponge symbionts, in particular Acidobacteria, are capable of assimilating carbon through anaplerotic processes. However, the presence of symbionts genomically capable of autotrophy does not inform on their actual contribution to light and dark carbon fixation. Using radioisotope assays we identified variability in the relative contributions of chemosynthesis to total carbon fixation in different sponge species. Furthermore, the symbiosis of sponges with two closely related Cyanobacteria results in outcomes that are not predictable by analysis of -omicsdata alone:CandidatusSynechococcus spongiarum contributes to the holobiont carbon budget by transfer of photosynthates, whileCandidatusSynechococcus feldmannii does not. Our results highlight the importance of combining sequencing data with physiology to gain a broader understanding of carbon metabolism within holobionts characterized by highly diverse microbiomes.</jats:p
Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool
AbstractMarine sponges host a wide diversity of microorganisms, which have versatile modes of carbon and energy metabolism. In this study we describe the major lithoheterotrophic and autotrophic processes in 21 microbial sponge-associated phyla using novel and existing genomic and transcriptomic datasets. We show that the main microbial carbon fixation pathways in sponges are the Calvin–Benson–Bassham cycle (energized by light in Cyanobacteria, by sulfur compounds in two orders of Gammaproteobacteria, and by a wide range of compounds in filamentous Tectomicrobia), the reductive tricarboxylic acid cycle (used by Nitrospirota), and the 3-hydroxypropionate/4-hydroxybutyrate cycle (active in Thaumarchaeota). Further, we observed that some sponge symbionts, in particular Acidobacteria, are capable of assimilating carbon through anaplerotic processes. The lithoheterotrophic lifestyle was widespread and CO oxidation is the main energy source for sponge lithoheterotrophs. We also suggest that the molybdenum-binding subunit of dehydrogenase (encoded by coxL) likely evolved to benefit also organoheterotrophs that utilize various organic substrates. Genomic potential does not necessarily inform on actual contribution of autotrophs to light and dark carbon budgets. Radioisotope assays highlight variability in the relative contributions of photo- and chemoautotrophs to the total carbon pool across different sponge species, emphasizing the importance of validating genomic potential with physiology experimentation.</jats:p
Identification of Quorum Sensing Activators and Inhibitors in The Marine Sponge Sarcotragus spinosulus
Marine sponges, a well-documented prolific source of natural products, harbor highly diverse microbial communities. Their extracts were previously shown to contain quorum sensing (QS) signal molecules of the N-acyl homoserine lactone (AHL) type, known to orchestrate bacterial gene regulation. Some bacteria and eukaryotic organisms are known to produce molecules that can interfere with QS signaling, thus affecting microbial genetic regulation and function. In the present study, we established the production of both QS signal molecules as well as QS inhibitory (QSI) molecules in the sponge species Sarcotragus spinosulus. A total of eighteen saturated acyl chain AHLs were identified along with six unsaturated acyl chain AHLs. Bioassay-guided purification led to the isolation of two brominated metabolites with QSI activity. The structures of these compounds were elucidated by comparative spectral analysis of 1HNMR and HR-MS data and were identified as 3-bromo-4-methoxyphenethylamine (1) and 5,6-dibromo-N,N-dimethyltryptamine (2). The QSI activity of compounds 1 and 2 was evaluated using reporter gene assays for long- and short-chain AHL signals (Escherichia coli pSB1075 and E. coli pSB401, respectively). QSI activity was further confirmed by measuring dose-dependent inhibition of proteolytic activity and pyocyanin production in Pseudomonas aeruginosa PAO1. The obtained results show the coexistence of QS and QSI in S. spinosulus, a complex signal network that may mediate the orchestrated function of the microbiome within the sponge holobiont.</jats:p
Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool
Identification and chemical characterization of N-acyl-homoserine lactone quorum sensing signals across sponge species and time
Marine sponges form symbiotic relationships with complex microbial communities, yet little is known about the mechanisms by which these microbes regulate their behavior through gene expression. Many bacterial communities regulate gene expression using chemical signaling termed quorum sensing. While a few previous studies have shown presence of N-acyl-homoserine lactone (AHL)-based quorum sensing in marine sponges, the chemical identity of AHL signals has been published for only two sponge species. In this study, we screened for AHLs in extracts from 15 sponge species (109 specimens in total) from the Mediterranean and Red Sea, using a wide-range AHL biosensor. This is the first time that AHL presence was examined over time in sponges. We detected the presence of AHL in 46% of the sponge species and found that AHL signals differ for certain sponge species in time and across sponge individuals. Furthermore, for the Mediterranean sponge species Sarcotragus fasciculatus, we identified 14 different AHLs. The constant presence of specific AHL molecules in all specimens, together with varying signaling molecules between the different specimens, makes Sa. fasciculatus a good model to further investigate the function of quorum sensing in sponge-associated bacteria. This study extends the knowledge of AHL-based quorum sensing in marine sponges
Co-existence of Quorum Sensing and Quorum Sensing Inhibitory Compounds in Marine Sponge <em>Sarcotragus spinosulus</em>
Marine sponges, a well documented prolific source of natural products, harbors numerous microbial communities believed to possess N-acyl homoserine lactones (AHLs) mediated Quorum sensing (QS) as one of the mechanisms of interaction. Bacteria and eukaryotic organisms are known to produce molecules that can interfere with QS signaling, thus affecting microbial genetic regulation and function. In the present study, we established the potential for production of both QS signal molecules as well as QS interfering molecules (QSI) in the same sponge species Sarcotragus spinosulus. A total of eighteen saturated acyl chain AHLs were identified along with six putative unsaturated acyl chain AHLs. Bioassay guided purification led to the isolation of two brominated metabolites with QS-interfering activity. The structures of these compounds were elucidated by comparative spectral analysis of 1HNMR and HR-MS data and was identified as 3-Br-N-methyltyramine (1) and 5,6-dibromo-N,N-dimethyltryptamine (2). The QSI activity of compounds 1 and 2 were evaluated using reporter gene assays for long- and short-chain signals (E. coli pSB1075 and E. coli pSB401) and was confirmed by measuring dose dependent inhibition of proteolytic activity and pyocyanin production in P. aeruginosa PAO1. The obtained results showed the co-existence of QS and QSI in S. spinosulus, a complex network which may mediate the orchestrated function of the microbiome within the sponge holobiont.</jats:p
