1,416 research outputs found
Right Parietal Brain Activity Precedes Perceptual Alternation of Bistable Stimuli
Momentary fluctuations of baseline activity have been shown to influence responses to sensory stimulation both behaviorally and neurophysiologically. This suggests that perceptual awareness does not solely arise from physical stimulus properties. Here we studied whether the momentary state of the brain immediately before stimulus presentation indicates how a physically unique but perceptually ambiguous stimulus will be perceived. A complex Necker cube was intermittently presented and subjects indicated whether their perception changed with respect to the preceding presentation. EEG was recorded from 256 channels. The prestimulus brain-state was defined as the spatial configuration of the scalp potential map within the 50 ms before stimulus arrival, representing the sum of all momentary ongoing brain processes. Two maps were found that doubly dissociated perceptual reversals from perceptual stability. For EEG sweeps classified as either map, distributed inverse solutions were computed and statistically compared. This yielded activity confined to a region in right inferior parietal cortex that was significantly more active before a perceptual reversal. In contrast, no significant topographic differences of the evoked potentials elicited by stable vs. reversed Necker cubes were found. This indicates that prestimulus activity in right inferior parietal cortex is associated with the perceptual chang
Crystal field states of Kondo lattice heavy fermions CeRuSn3 and CeRhSn3
Inelastic neutron scattering experiments have been carried out to determine
the crystal field states of the Kondo lattice heavy fermions CeRuSn3 and
CeRhSn3. Both the compounds crystallize in LaRuSn3-type cubic structure (space
group Pm-3n) in which the Ce atoms occupy two distinct crystallographic sites
with cubic (m-3) and tetragonal (-4m.2) point symmetries. The INS data of
CeRuSn3 reveal the presence of a broad excitation centered around 6-8 meV which
is accounted by a model based on crystal electric field (CEF) excitations. On
the other hand, the INS data of isostructural CeRhSn3 reveal three CEF
excitations around 7.0, 12.2 and 37.2 meV. The neutron intensity sum rule
indicates that the Ce ions at both cubic and tetragonal Ce sites are in Ce3+
state in both CeRuSn3 and CeRhSn3. The CEF level schemes for both the compounds
are deduced. We estimate the Kondo temperature T_K = 3.1(2) K for CeRuSn3 from
neutron quasielastic linewidth in excellent agreement with that determined from
the scaling of magnetoresistance which gives T_K = 3.2(1) K. For CeRhSn3 the
neutron quasielastic linewidth gives T_K = 4.6 K. For both CeRuSn3 and CeRhSn3,
the ground state of Ce3+ turns out to be a quartet for the cubic site and a
doublet for the tetragonal site.Comment: 12 pages, 13 figures, 2 tables, to appear in Phys. Rev.
Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world's smallest vertebrate
10.1186/1471-2148-7-38BMC Evolutionary Biology7
Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen losses from cropland soil in Europe
International audienceFor the comprehensive assessment of the policy impact on greenhouse gas emissions from agricultural soils both socio-economic aspects and the environmental heterogeneity of the landscape are important factors that must be considered. We developed a modelling framework that links the large-scale economic model for agriculture CAPRI with the bio-geochemistry model DNDC to simulate greenhouse gas fluxes, carbon stock changes and the nitrogen budget of agricultural soils in Europe. The framework allows the ex-ante simulation of agricultural or agri-environmental policy impacts on wide range of environmental problems such as climate change (greenhouse gas emissions), air pollution and groundwater pollution. Those environmental impacts can be analysed in the context of economic and social indicators as calculated by the economic model. The methodology consists in four steps (i) the definition of appropriate calculation units that can be considered as homogeneous in terms of economic behaviour and environmental response; (ii) downscaling of regional agricultural statistics and farm management information from a CAPRI simulation run into the spatial calculation units; (iii) setting up of environmental model scenarios and model runs; and finally (iv) aggregating results for interpretation. We show first results of the nitrogen budget in cropland for the area of fourteen countries of the European Union. These results, in terms of estimated nitrogen fluxes, must still be considered as illustrative as needs for improvements in input data (e.g. the soil map) and management data (yield estimates) have been identified and will be the focus of future work. Nevertheless, we highlight inter-dependencies between farmer's choices of land uses and the environmental impact of different cultivation systems
On Binary Matroid Minors and Applications to Data Storage over Small Fields
Locally repairable codes for distributed storage systems have gained a lot of
interest recently, and various constructions can be found in the literature.
However, most of the constructions result in either large field sizes and hence
too high computational complexity for practical implementation, or in low rates
translating into waste of the available storage space. In this paper we address
this issue by developing theory towards code existence and design over a given
field. This is done via exploiting recently established connections between
linear locally repairable codes and matroids, and using matroid-theoretic
characterisations of linearity over small fields. In particular, nonexistence
can be shown by finding certain forbidden uniform minors within the lattice of
cyclic flats. It is shown that the lattice of cyclic flats of binary matroids
have additional structure that significantly restricts the possible locality
properties of -linear storage codes. Moreover, a collection of
criteria for detecting uniform minors from the lattice of cyclic flats of a
given matroid is given, which is interesting in its own right.Comment: 14 pages, 2 figure
The flavor symmetry in the standard model and the triality symmetry
A Dirac fermion is expressed by a 4 component spinor which is a combination
of two quaternions and which can be treated as an octonion. The octonion
possesses the triality symmetry, which defines symmetry of fermion spinors and
bosonic vector fields.
The triality symmetry relates three sets of spinors and two sets of vectors,
which are transformed among themselves via transformations , and . If the electromagnetic (EM) interaction is
sensitive to the triality symmetry, i.e. EM probe selects one triality sector,
EM signals from the 5 transformed world would not be detected, and be treated
as the dark matter. According to an astrophysical measurement, the ratio of the
dark to ordinary matter in the universe as a whole is almost exactly 5. We
expect quarks are insensitive to the triality, and triality will appear as
three times larger flavor degrees of freedom in the lattice simulation.Comment: 16 pages 8 figures, To be published in International Journal of
Modern Physics
Physical properties of noncentrosymmetric superconductor LaIrSi3: A {\mu}SR study
The results of heat capacity C_p(T, H) and electrical resistivity \rho(T,H)
measurements down to 0.35 K as well as muon spin relaxation and rotation
(\muSR) measurements on a noncentrosymmetric superconductor LaIrSi3 are
presented. Powder neutron diffraction confirmed the reported noncentrosymmetric
body-centered tetragonal BaNiSn3-type structure (space group I4\,mm) of
LaIrSi3. The bulk superconductivity is observed below T_c = 0.72(1) K. The
intrinsic \Delta C_e/\gamma_n T_c = 1.09(3) is significantly smaller than the
BCS value of 1.43, and this reduction is accounted by the \alpha-model of BCS
superconductivity. The analysis of the superconducting state C_e(T) data by the
single-band \alpha-model indicates a moderately anisotropic order parameter
with the s-wave gap \Delta(0)/k_B T_c = 1.54(2) which is lower than the BCS
value of 1.764. Our estimates of various normal and superconducting state
parameters indicate a weakly coupled electron-phonon driven type-I s-wave
superconductivity in LaIrSi3. The \muSR results also confirm the conventional
type-I superconductivity in LaIrSi3 with a preserved time reversal symmetry and
hence a singlet pairing superconducting ground state.Comment: 11 pages, 8 figures, 2 table
Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe
A comprehensive assessment of policy impact on greenhouse gas (GHG) emissions from agricultural soils requires careful consideration of both socio-economic aspects and the environmental heterogeneity of the landscape. We developed a modelling framework that links the large-scale economic model for agriculture CAPRI (Common Agricultural Policy Regional Impact assessment) with the biogeochemistry model DNDC (DeNitrification DeComposition) to simulate GHG fluxes, carbon stock changes and the nitrogen budget of agricultural soils in Europe. The framework allows the ex-ante simulation of agricultural or agri-environmental policy impacts on a wide range of environmental problems such as climate change (GHG emissions), air pollution and groundwater pollution. Those environmental impacts can be analyzed in the context of economic and social indicators as calculated by the economic model. The methodology consists of four steps: (i) definition of appropriate calculation units that can be considered as homogeneous in terms of economic behaviour and environmental response; (ii) downscaling of regional agricultural statistics and farm management information from a CAPRI simulation run into the spatial calculation units; (iii) designing environmental model scenarios and model runs; and finally (iv) aggregating results for interpretation. We show the first results of the nitrogen budget in croplands in fourteen countries of the European Union and discuss possibilities to improve the detailed assessment of nitrogen and carbon fluxes from European arable soils
On character generators for simple Lie algebras
We study character generating functions (character generators) of simple Lie
algebras. The expression due to Patera and Sharp, derived from the Weyl
character formula, is first reviewed. A new general formula is then found. It
makes clear the distinct roles of ``outside'' and ``inside'' elements of the
integrity basis, and helps determine their quadratic incompatibilities. We
review, analyze and extend the results obtained by Gaskell using the Demazure
character formulas. We find that the fundamental generalized-poset graphs
underlying the character generators can be deduced from such calculations.
These graphs, introduced by Baclawski and Towber, can be simplified for the
purposes of constructing the character generator. The generating functions can
be written easily using the simplified versions, and associated Demazure
expressions. The rank-two algebras are treated in detail, but we believe our
results are indicative of those for general simple Lie algebras.Comment: 50 pages, 11 figure
- …
