755 research outputs found

    Deconstructing blazars: A different scheme for jet kinematics in flat-spectrum AGN

    Full text link
    Recent VLBI studies of the morphology and kinematics of individual BL Lac objects (S5 1803+784, PKS 0735+178, etc.) have revealed a new paradigm for the pc-scale jet kinematics of these sources. Unlike the apparent superluminal outward motions usually observed in blazars, most, if not all, jet components in these sources appear to be stationary with respect to the core, while exhibiting strong changes in their position angles. As a result, the jet ridge lines of these sources evolve substantially, at times forming a wide channel-flow. We investigate the Caltech-Jodrell Bank flat-spectrum (CJF) sample of radio-loud active galaxies to study this new kinematic scenario for flat-spectrum AGN. We develop a number of tools that extract information about the apparent linear and angular evolution of the CJF jet ridge lines, as well as their morphology. In this way, we study both radial and non-radial apparent motions in the CJF jets. We find that approximately half of the sample shows appreciable apparent jet widths (>10degrees>10 degrees), with BL Lac jet ridge lines showing significantly larger apparent widths than both quasars and radio galaxies. In addition, BL Lac jet ridge lines are found to change their apparent width more strongly. Finally, BL Lac jet ridge lines show the least apparent linear evolution, which translates to the smallest apparent expansion speeds for their components. We find compelling evidence supporting a substantially different kinematic scenario for flat-spectrum radio-AGN jets and in particular for BL Lac objects. In addition, we find that variability is closely related to the properties of a source's jet ridge line. Variable quasars are found to show "BL Lac like" behavior, compared to their non-variable counterparts.Comment: 16 pages, 13 figures, accepted for publication in Astronomy & Astrophysic

    Tracing the merger-driven evolution of active galaxies using the CJF sample

    Full text link
    In the context of the evolution of large structures in the Universe, it is unclear whether active galaxies are a phase which each galaxy undergoes, and what is the importance of the evolution of black holes in their centers. Binary black hole (BBH) systems could play a key role in our understanding of the above question. We investigate the Caltech-Jodrell Bank flat-spectrum (CJF) sample for evidence in favor of the merger-driven evolution scheme of active galaxies and search tracer-systems of AGN evolution and possible indications of BBH candidates. We discuss the validity and ambiguity of such indications and formulate a set of selection criteria for the detection of such systems. We conduct an extensive literature search for all available multi-wavelength information, concentrating on the optical and infrared regime, in addition to morphological information of the CJF sources. We analyze the statistics of this sample, in terms of these properties. We find 1 ULIRG (Mrk 231) included in the CJF, prototype of a transitory system. In total 28.6% of the CJF sources with z<0.4 are distorted or have a companion. Given the unbiased sample used here, this provides strong evidence for the ubiquity of the merger phenomenon in the context of active galaxies. We find a correlation between the radio and the near-infrared luminosity for the high-luminosity sources, interpreted in the context of the interplay between a star-formation and AGN component. We find a connection between variability and evolutionary transitory systems, as selected through their near-infrared colors. We select 28 sources that trace the different evolution phases of an AGN, as well as a number of the most promising BBH candidates. We find 4 sources with almost periodical variability in the optical and radio on similar timescales.Comment: 18 pages, 6 figures, accepted for publication in A&A (updated to match proofs

    Understanding BL Lac objects Structural & kinematic mode changes in the BL Lac object PKS 0735+178

    Full text link
    Context. We present evidence that parsec-scale jets in BL Lac objects may be significantly distinct in kinematics from their counterparts in quasars. We argued this previously for the BL lac sources 1803+784 and 0716+714, report here a similar pattern for another well-known BL Lac object, PKS 0735+178, whose nuclear jet is found to exhibit kinematics atypical of quasars. Aims. A detailed study of the jet components' motion reveals that the standard AGN paradigm of apparent superluminal motion does not always describe the kinematics in BL Lac objects. We study 0735+178 here to augment and improve the understanding of the peculiar motions in the jets of BL Lac objects as a class. Methods. We analyzed 15 GHz VLBA (Very Long Baseline Array) observations (2cm/MOJAVE survey) performed at 23 epochs between 1995.27 and 2008.91. Results. We found a drastic structural mode change in the VLBI jet of 0735+178, between 2000.4 and 2001.8 when its twice sharply bent trajectory turned into a linear shape.We further found that this jet had undergone a similar transition sometime between December 1981 and June 1983. A mode change, occurring in the reverse direction (between mid-1992 and mid-1995) has already been reported in the literature. These structural mode changes are found to be reflected in changed kinematical behavior of the nuclear jet, manifested as an apparent superluminal motion and stationarity of the radio knots. In addition, we found the individual mode changes to correlate in time with the maxima in the optical light curve. The last two transitions occurred before a (modest) radio flare. The behavior of this pc-scale jet appears to favor a scenario involving non-ballistic motions of the radio knots, produced by the precession of a continuous jet within the ambient medium.Comment: Accepted for publication in A&A (Abstract reduced for astro-ph

    The non-ballistic superluminal motion in the plane of the sky-II

    Full text link
    The model of non-ballistic jet motion proposed in 2008 provides a simple explanation to the inward jet motion and bent jet. Recently, evidences of such a non-radial motion increase rapidly, and more complicated morphologies appear. On the other hand, the ballistic plus precession model likely holds in majority samples of jet motion. This paper discusses the relationship between the ballistic and non-ballistic model of jet motion, which suggests that the interaction of ejectors with ambient matter can produce knots at different stages of evolution and hence different separations to the core. And as a jet precesses, knots produced between the core and the deceleration radius result in spiral pattern expected by the model of ballistic plus precession; and knots generated at the deceleration radius display non-radial motion such as bent jet or oscillation of ridge-line. This paper develops the first non-ballistic model in four aspects. Firstly, it provides a numerical simulation to the production of multi-knot for a precessing jet. Secondly, it fits the precession behavior of multi-knot and interprets the oscillation of ridge lines like S5 1803+784. Thirdly, it gives an unified interpretation to the bent jet applicable to both multi-knot and single knot. And fourthly, the problem of very large numbers of observed outward motions as opposed to the inward ones is addressed in a new scope.Comment: 9 pages, 6 figures, accepted by MNRA

    Is 0716+714 a superluminal blazar?

    Get PDF
    We present an analysis of new and old high frequency VLBI data collected during the last 10 years at 5--22 GHz. For the jet components in the mas-VLBI jet, two component identifications are possible. One of them with quasi-stationary components oscillating about their mean positions. Another identification scheme, which formally gives the better expansion fit, yields motion with 9\sim 9 cc for H0=65H_0=65 km s1^{-1} Mpc1^{-1} and q0=0.5q_0=0.5. This model would be in better agreement with the observed rapid IDV and the expected high Lorentz-factor, deduced from IDV.Comment: 2 pages, 3 figures, appears in: Proceedings of the 6th European VLBI Network Symposium held on June 25th-28th in Bonn, Germany. Edited by: E. Ros, R.W. Porcas, A.P. Lobanov, and J.A. Zensu

    Constraining the parameters of the putative supermassive binary black hole in PG 1302-102 from its radio structure

    Get PDF
    We investigate the pc-scale kinematics and kpc-scale radio morphology of the quasar PG 1302-102, which may harbour a sub-pc separation supermassive binary black hole system at its centre as inferred from optical variability. High-resolution radio interferometric measurements obtained with the Very Long Baseline Array (VLBA) in the Monitoring Of Jets in Active galactic nuclei with VLBA Experiments (MOJAVE) programme at 15 GHz at 20 epochs spanning 17 years were analysed to investigate the pc-scale radio structure. Archival observations with the Very Large Array (VLA) at 1.4 GHz and 5 GHz were obtained to study the kpc-scale morphology. We find that the pc-scale jet is inclined within ~2.2 deg to the line of sight and has a half-opening angle of about 0.2 deg. The parameters derived from the pc-scale radio jet are qualitatively consistent with those obtained from the analysis of the optical light curve of PG 1302-102. We obtain at least 0.08 for the mass ratio of the two black holes in the system. We find some indication for a helical jet structure on kpc-scale, but the directions of the inner and the extended radio jets are significantly different, obstructing a straightforward connection of the pc- and kpc-scale jets within the binary scenario.Comment: 9 pages, 4 figures, 1 table, accepted to MNRA

    A kinematic study of the compact jet in quasar B3 1633+382

    Full text link
    We present a study of the motion of compact jet components in quasar B3 1633+382. Through analyzing 14 epochs of VLBI observations of three components (B1, B2, and B3) at 22 GHz, we find two different possibilities of component classification. Thus two corresponding kinematical models can be adopted to explain the evolutionary track of components. One is a linear motion, while another is a helical model. Future observations are needed to provide new kinematical constraints for the motion of these components in this source.Comment: 7 pages, 3 figures; Accepted for publication in A&

    The kinematics in the pc-scale jets of AGN The case of S5 1803+784

    Full text link
    We present a kinematic analysis of jet component motion in the VLBI jet of the BL Lac object S5 1803+784, which does not reveal long-term outward motion for most of the components. Understanding the complex kinematic phenomena can possibly provide insights into the differences between quasars and BL Lac objects. The blazar S5 1803+784 has been studied with VLBI at ν\nu =1.6, 2.3, 5, 8.4, and 15 GHz between 1993.88 and 2005.68 in 26 observing runs. We (re)analyzed the data and present Gaussian model-fits. We collected the already published kinematic information for this source from the literature and re-identified the components according to the new scenario presented in this paper. Altogether, 94 epochs of observations have been investigated. A careful study of the long-term kinematics reveals a new picture for component motion in S5 1803+784. In contrast to previously discussed motion scenarios, we find that the jet structure within 12 mas of the core can most easily be described by the coexistence of several bright jet features that remain on the long-term at roughly constant core separations (in addition to the already known {\it stationary} jet component \sim 1.4 mas) and one faint component moving with an apparent superluminal speed (\sim 19c, based on 3 epochs). While most of the components maintain long-term roughly constant distances from the core, we observe significant, smooth changes in their position angles. We report on an evolution of the whole jet ridge line with time over the almost 12 years of observations. The width of the jet changes periodically with a period of \sim 8 to 9 years. We find a correlation between changes in the position angle and maxima in the total flux-density. We present evidence for a geometric origin of the phenomena and discuss possible models.Comment: The manuscript will be published by A&
    corecore