64 research outputs found

    Modular Termination Proofs of Recursive Java Bytecode Programs by Term Rewriting

    Get PDF
    In earlier work we presented an approach to prove termination of non-recursive Java Bytecode (JBC) programs automatically. Here, JBC programs are first transformed to finite termination graphs which represent all possible runs of the program. Afterwards, the termination graphs are translated to term rewrite systems (TRSs) such that termination of the resulting TRSs implies termination of the original JBC programs. So in this way, existing techniques and tools from term rewriting can be used to prove termination of JBC automatically. In this paper, we improve this approach substantially in two ways: (1) We extend it in order to also analyze recursive JBC programs. To this end, one has to represent call stacks of arbitrary size. (2) To handle JBC programs with several methods, we modularize our approach in order to re-use termination graphs and TRSs for the separate methods and to prove termination of the resulting TRS in a modular way. We implemented our approach in the tool AProVE. Our experiments show that the new contributions increase the power of termination analysis for JBC significantly

    CTL+FO Verification as Constraint Solving

    Full text link
    Expressing program correctness often requires relating program data throughout (different branches of) an execution. Such properties can be represented using CTL+FO, a logic that allows mixing temporal and first-order quantification. Verifying that a program satisfies a CTL+FO property is a challenging problem that requires both temporal and data reasoning. Temporal quantifiers require discovery of invariants and ranking functions, while first-order quantifiers demand instantiation techniques. In this paper, we present a constraint-based method for proving CTL+FO properties automatically. Our method makes the interplay between the temporal and first-order quantification explicit in a constraint encoding that combines recursion and existential quantification. By integrating this constraint encoding with an off-the-shelf solver we obtain an automatic verifier for CTL+FO

    Proving termination through conditional termination

    Get PDF
    We present a constraint-based method for proving conditional termination of integer programs. Building on this, we construct a framework to prove (unconditional) program termination using a powerful mechanism to combine conditional termination proofs. Our key insight is that a conditional termination proof shows termination for a subset of program execution states which do not need to be considered in the remaining analysis. This facilitates more effective termination as well as non-termination analyses, and allows handling loops with different execution phases naturally. Moreover, our method can deal with sequences of loops compositionally. In an empirical evaluation, we show that our implementation VeryMax outperforms state-of-the-art tools on a range of standard benchmarks.Peer ReviewedPostprint (author's final draft
    corecore