273 research outputs found

    Using honey to heal diabetic foot ulcers

    Get PDF
    Diabetic ulcers seem to be arrested in the inflammatory/proliferative stage of the healing process, allowing infection and inflammation to preclude healing. Antibiotic-resistant bacteria have become a major cause of infections, including diabetic foot infections. It is proposed here that the modern developments of an ancient and traditional treatment for wounds, dressing them with honey, provide the solution to the problem of getting diabetic ulcers to move on from the arrested state of healing. Honeys selected to have a high level of antibacterial activity have been shown to be very effective against antibiotic-resistant strains of bacteria in laboratory and clinical studies. The potent anti-inflammatory action of honey is also likely to play an important part in overcoming the impediment to healing that inflammation causes in diabetic ulcers, as is the antioxidant activity of honey. The action of honey in promotion of tissue regeneration through stimulation of angiogenesis and the growth of fibroblasts and epithelial cells, and its insulin-mimetic effect, would also be of benefit in stimulating the healing of diabetic ulcers. The availability of honey-impregnated dressings which conveniently hold honey in place on ulcers has provided a means of rapidly debriding ulcers and removing the bacterial burden so that good healing rates can be achieved with neuropathic ulcers. With ischemic ulcers, where healing cannot occur because of lack of tissue viability, these honey dressings keep the ulcers clean and prevent infection occurring

    Unlocking preservation bias in the amber insect fossil record through experimental decay.

    Get PDF
    Fossils entombed in amber are a unique resource for reconstructing forest ecosystems, and resolving relationships of modern taxa. Such fossils are famous for their perfect, life-like appearance. However, preservation quality is vast with many sites showing only cuticular preservation, or no fossils. The taphonomic processes that control this range are largely unknown; as such, we know little about potential bias in this important record. Here we employ actualistic experiments, using, fruit flies and modern tree resin to determine whether resin type, gut microbiota, and dehydration prior to entombment affects decay. We used solid phase microextraction gas chromatography-mass spectrometry (SPME GC-MS) to confirm distinct tree resin chemistry; gut microbiota of flies was modified using antibiotics and categorized though sequencing. Decay was assessed using phase contrast synchrotron tomography. Resin type demonstrates a significant control on decay rate. The composition of the gut microbiota was also influential, with minor changes in composition affecting decay rate. Dehydration prior to entombment, contrary to expectations, enhanced decay. Our analyses show that there is potential significant bias in the amber fossil record, especially between sites with different resin types where ecological completeness and preservational fidelity are likely affected

    A [4Fe-4S]-Fe(CO)(CN)-L-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly.

    Get PDF
    Biosynthesis of the [FeFe] hydrogenase active site (the 'H-cluster') requires the interplay of multiple proteins and small molecules. Among them, the radical S-adenosylmethionine enzyme HydG, a tyrosine lyase, has been proposed to generate a complex that contains an Fe(CO)2(CN) moiety that is eventually incorporated into the H-cluster. Here we describe the characterization of an intermediate in the HydG reaction: a [4Fe-4S][(Cys)Fe(CO)(CN)] species, 'Complex A', in which a CO, a CN- and a cysteine (Cys) molecule bind to the unique 'dangler' Fe site of the auxiliary [5Fe-4S] cluster of HydG. The identification of this intermediate-the first organometallic precursor to the H-cluster-validates the previously hypothesized HydG reaction cycle and provides a basis for elucidating the biosynthetic origin of other moieties of the H-cluster

    Deciding Between SF-6Dv2 Health States: A Think-Aloud Study of Decision-Making Strategies Used in Discrete Choice Experiments.

    Full text link
    OBJECTIVE: This study aimed to gain insight into decision-making strategies individuals used when evaluating pairs of SF-6Dv2 health states in discrete choice experiments (DCEs). METHODS: This qualitative, cross-sectional, noninterventional study asked participants to use a think-aloud approach to compare SF-6Dv2 health states in DCEs. Thematic analysis focused on comprehension and cognitive strategies used to compare health states and make decisions. RESULTS: Participants (N = 40) used 3 main strategies when completing DCEs: (1) trading, (2) reinterpretation, and (3) relying on previous experience. Trading was the most common strategy, used by everyone at least once, and involved prioritizing key attributes, such as preferring a health state with significant depression but no bodily pain. Reinterpretation was used by 17 participants and involved reconstructing health states by changing underlying assumptions (eg, rationalizing selecting a health state with significant pain because they could take pain medications). Finally, some (n = 13) relied on previous experience when making decisions on some choice tasks. Participants with experience dealing with pain, for instance, prioritized health states with the least impact in this dimension. CONCLUSIONS: Qualitatively evaluating the decision-making strategies used in DCEs allows researchers to evaluate whether the tasks and attributes are interpreted accurately. The findings from this study add to the understanding of the generation of SF-6Dv2 health utility weights and the validity of these weights (e.g., reinterpreting health states could undermine the validity of DCEs and utility weights), and the overall usefulness of the SF-6Dv2. The methodology described in this study can and should be carried forth in valuing other health utility measures, not just the SF-6Dv2

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    Systemic AAV vectors for widespread and targeted gene delivery in rodents

    Get PDF
    We recently developed adeno-associated virus (AAV) capsids to facilitate efficient and noninvasive gene transfer to the central and peripheral nervous systems. However, a detailed protocol for generating and systemically delivering novel AAV variants was not previously available. In this protocol, we describe how to produce and intravenously administer AAVs to adult mice to specifically label and/or genetically manipulate cells in the nervous system and organs, including the heart. The procedure comprises three separate stages: AAV production, intravenous delivery, and evaluation of transgene expression. The protocol spans 8 d, excluding the time required to assess gene expression, and can be readily adopted by researchers with basic molecular biology, cell culture, and animal work experience. We provide guidelines for experimental design and choice of the capsid, cargo, and viral dose appropriate for the experimental aims. The procedures outlined here are adaptable to diverse biomedical applications, from anatomical and functional mapping to gene expression, silencing, and editing

    European research priorities for intracerebral haemorrhage

    Get PDF
    Over 2 million people are affected by intracerebral haemorrhage (ICH) worldwide every year, one third of them dying within 1 month, and many survivors being left with permanent disability. Unlike most other stroke types, the incidence, morbidity and mortality of ICH have not declined over time. No standardised diagnostic workup for the detection of the various underlying causes of ICH currently exists, and the evidence for medical or surgical therapeutic interventions remains limited. A dedicated European research programme for ICH is needed to identify ways to reduce the burden of ICH-related death and disability. The European Research Network on Intracerebral Haemorrhage EURONICH is a multidisciplinary academic research collaboration that has been established to define current research priorities and to conduct large clinical studies on all aspects of ICH. Copyright (C) 2011 S. Karger AG, Base

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Selecting information technology for physicians' practices: a cross-sectional study

    Get PDF
    BACKGROUND: Many physicians are transitioning from paper to electronic formats for billing, scheduling, medical charts, communications, etc. The primary objective of this research was to identify the relationship (if any) between the software selection process and the office staff's perceptions of the software's impact on practice activities. METHODS: A telephone survey was conducted with office representatives of 407 physician practices in Oregon who had purchased information technology. The respondents, usually office managers, answered scripted questions about their selection process and their perceptions of the software after implementation. RESULTS: Multiple logistic regression revealed that software type, selection steps, and certain factors influencing the purchase were related to whether the respondents felt the software improved the scheduling and financial analysis practice activities. Specifically, practices that selected electronic medical record or practice management software, that made software comparisons, or that considered prior user testimony as important were more likely to have perceived improvements in the scheduling process than were other practices. Practices that considered value important, that did not consider compatibility important, that selected managed care software, that spent less than $10,000, or that provided learning time (most dramatic increase in odds ratio, 8.2) during implementation were more likely to perceive that the software had improved the financial analysis process than were other practices. CONCLUSION: Perhaps one of the most important predictors of improvement was providing learning time during implementation, particularly when the software involves several practice activities. Despite this importance, less than half of the practices reported performing this step
    corecore