2,712 research outputs found

    Measurement, Decoherence and Chaos in Quantum Pinball

    Full text link
    The effect of introducing measuring devices in a ``quantum pinball'' system is shown to lead to a chaotic evolution for the particle position as defined in Bohm's approach to Quantum Mechanics.Comment: Latex, uses ioplppt style, two figures. Also can be ftp'd anonymously from: ftp://zaphod.phys.port.ac.uk/pub/papers/paper2

    Photon mass and quantum effects of the Aharonov-Bohm type

    Full text link
    The magnetic field due to the photon rest mass mphm_{ph} modifies the standard results of the Aharonov-Bohm effect for electrons, and of other recent quantum effects. For the effect involving a coherent superposition of beams of particles with opposite electromagnetic properties, by means of a table-top experiment, the limit mphx1051gm_{ph}x10^{-51}g is achievable, improving by 6 orders of magnitude that derived by Boulware and Deser for the Aharonov-Bohm effect.Comment: 5 page

    Internal structures of electrons and photons: the concept of extended particles revisited

    Full text link
    The theoretical foundations of quantum mechanics and de Broglie--Bohm mechanics are analyzed and it is shown that both theories employ a formal approach to microphysics. By using a realistic approach it can be established that the internal structures of extended particles comply with a wave-equation. Including external potentials yields the Schrodinger equation, which, in this context, is arbitrary due to internal energy components. The statistical interpretation of wave functions in quantum theory as well as Heisenberg's uncertainty relations are shown to be an expression of this, fundamental, arbitrariness. Electrons and photons can be described by an identical formalism, providing formulations equivalent to the Maxwell equations. Electrostatic interactions justify the initial assumption of electron-wave stability: the stability of electron waves can be referred to vanishing intrinsic fields of interaction. The theory finally points out some fundamental difficulties for a fully covariant formulation of quantum electrodynamics, which seem to be related to the existing infinity problems in this field.Comment: 14 pages (RevTeX one column) and 1 figure (eps). For a full list of available papers see http://info.tuwien.ac.at/cms/wh

    About Some Problems Raised by the Relativistic Form of De-Broglie--Bohm Theory of Pilot Wave

    Get PDF
    The standard relativistic de-Broglie--Bohm theory has the problems of tacyonic solutions and the incorrect non-relativistic limit. In this paper we obtain a relativistic theory, not decomposing the relativistic wave equations but looking for a generalization of non-relativistic Bohmian theory in such a way that the correct non-relativistic limit emerges. In this way we are able to construct a relativistic de-Broglie--Bohm theory both for a single particle and for a many-particle system. At the end, the theory is extended to the curved space-time and the connection with quantum gravity is discussed.Comment: 13 pages, RevTeX. To appear in Physica Scripta, 200

    Causal Interpretation and Quantum Phase Space

    Get PDF
    We show that the de Broglie-Bohm interpretation can be easily implemented in quantum phase space through the method of quasi-distributions. This method establishes a connection with the formalism of the Wigner function. As a by-product, we obtain the rules for evaluating the expectation values and probabilities associated with a general observable in the de Broglie-Bohm formulation. Finally, we discuss some aspects of the dynamics.Comment: 13 pages, LaTe

    Madelung Fluid Model for The Most Likely Wave Function of a Single Free Particle in Two Dimensional Space with a Given Average Energy

    Full text link
    We consider spatially two dimensional Madelung fluid whose irrotational motion reduces into the Schr\"odinger equation for a single free particle. In this respect, we regard the former as a direct generalization of the latter, allowing a rotational quantum flow. We then ask for the most likely wave function possessing a given average energy by maximizing the Shannon information entropy over the quantum probability density. We show that there exists a class of solutions in which the wave function is self-trapped, rotationally symmetric, spatially localized with finite support, and spinning around its center, yet stationary. The stationarity comes from the balance between the attractive quantum force field of a trapping quantum potential generated by quantum probability density and the repulsive centrifugal force of a rotating velocity vector field. We further show that there is a limiting case where the wave function is non-spinning and yet still stationary. This special state turns out to be the lowest stationary state of the ordinary Schr\"odinger equation for a particle in a cylindrical tube classical potential.Comment: 19 page

    Causal loop quantum cosmology in momentum space

    Full text link
    We shall show that it is possible to make a causal interpretation of loop quantum cosmology using the momentum as the dynamical variable. We shall show that one can derive Bohmian trajectories. For a sample cosmological solution with cosmological constant, the trajectory is plotted.Comment: 21 pages, 2 figures. To appear in Int. J. Mod. Phys. D, 200

    Conformal Invariance and Wave-Particle Duality

    Full text link
    We present a conformally invariant generalized form of the free particle action by connecting the wave and particle aspects through gravity. Conformal invariance breaking is introduced by choosing a particular configurat$ of dynamical variables. This leads to the geometrization of the quantum aspects of matter.Comment: 5 page
    corecore