23 research outputs found

    A survey of the Republic County high schools

    Get PDF

    Biomass harvesting cost analysis using field scale testing data

    Get PDF
    Doctor of PhilosophyDepartment of Biological & Agricultural EngineeringDonghai WangIn 2008 AGCO began a project to develop machinery to harvest biomass for a DOE project called “Integration of Advanced Logistical Systems and Focused Bioenergy Harvesting Technologies to supply Crop Residues and A Herbaceous Energy Crops in a Diversified Large Square Bale Format”. The project considered the harvest of corn stover, wheat straw, switchgrass and energy sorghum. AGCO modified some existing pieces of production hay harvesting equipment and developed a new larger square baler for single pass crop residue harvesting. Field scale tests of the developed equipment occurred in the years 2010, 2011, and 2012. Data collected during these tests included crop harvested, field location, number of hectares harvested, moisture content of harvested biomass, number of bales produced, weight of each bale, time to harvest, model(s) and sizes of machine(s) used, and fuel consumed. Data was collected for different harvesting techniques for crop residues: two-pass vs single-pass harvesting for corn stover and wheat straw. Data was collected for harvesting switchgrass and energy sorghum for comparison purposes. The cropping years were very different over the course of the project due rain fall amounts. The data was analyzed using American Society of Agricultural and Biological Engineer machinery management standards and accepted Agriculture & Applied Economics Association assumptions. Excel spreadsheets were developed to calculate the harvesting costs on a dry Mg basis for each crop that was harvested. Results from the data analysis was used to modify the Integrated Biomass Supply Analysis and Logistics model to predict harvesting costs for crop residues at different yield levels, harvest conditions, and machine settings for single-pass harvesting. A number of conclusions can be drawn from this analysis. First, “take rates” for crop residues can have a significant effect on harvest costs. Low “take rates” can make it economically unfeasible to harvest crop residues in some instances. Second, single-pass harvesting of crop residues is less labor and fuel intensive than multi-pass harvesting. Third, the large yields potential of energy sorghum, which requires more operations to harvest than switchgrass, more economically to harvest than switchgrass. Fourth, operational techniques can be used to offset some crop variability to reduce harvest cost of crop residues. Lastly, a decision tool has been developed to aid producers in the decision of whether to harvest corn stover or not based on cost return estimates

    Early-season plant-to-plant spatial uniformity can affect soybean yields

    Get PDF
    Increased soybean (Glycine max L. Merril) seed costs have motivated interest in reduced seeding rates to improve profitability while maintaining or increasing yield. However, little is known about the effect of early-season plant-to-plant spatial uniformity on the yield of modern soybean varieties planted at reduced seeding rates. The objectives of this study were to (i) investigate traditional and devise new metrics for characterizing early-season plant-to-plant spatial uniformity, (ii) identify the best metrics correlating plant-to-plant spatial uniformity and soybean yield, and (iii) evaluate those metrics at different seeding rate (and achieved plant density) levels and yield environments. Soybean trials planted in 2019 and 2020 compared seeding rates of 160, 215, 270, and 321 thousand seeds ha−1 planted with two different planters, Max Emerge and Exact Emerge, in rainfed and irrigated conditions in the United States (US). In addition, trials comparing seeding rates of 100, 230, 360, and 550 thousand seeds ha−1 were conducted in Argentina (Arg) in 2019 and 2020. Achieved plant density, grain yield, and early-season plant-to-plant spacing (and calculated metrics) were measured in all trials. All site-years were separated into low- (2.7 Mg ha−1), medium- (3 Mg ha−1), and high- (4.3 Mg ha−1) yielding environments, and the tested seeding rates were separated into low ( 300 seeds m−2) levels. Out of the 13 metrics of spatial uniformity, standard deviation (sd) of spacing and of achieved versus targeted evenness index (herein termed as ATEI, observed to theoretical ratio of plant spacing) showed the greatest correlation with soybean yield in US trials (R2 = 0.26 and 0.32, respectively). However, only the ATEI sd, with increases denoting less uniform spacing, exhibited a consistent relationship with yield in both US and Arg trials. The effect of spatial uniformity (ATEI sd) on soybean yield differed by yield environment. Increases in ATEI sd (values > 1) negatively impacted soybean yields in both low- and medium-yield environments, and in achieved plant densities below 200 thousand plants ha−1. High-yielding environments were unaffected by variations in spatial uniformity and plant density levels. Our study provides new insights into the effect of early-season plant-to-plant spatial uniformity on soybean yields, as influenced by yield environments and reduced plant densities.Fil: Pereyra, Valentina M.. Kansas State University; Estados UnidosFil: Bastos, Leonardo M.. University of Georgia; Estados UnidosFil: Froes de Borja Reis, André. State University of Louisiana; Estados UnidosFil: Melchiori, Ricardo J. M.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Entre Ríos. Estación Experimental Agropecuaria Paraná; ArgentinaFil: Maltese, Nicolás Elías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; ArgentinaFil: Appelhans, Stefania Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; ArgentinaFil: Vara Prasad, P. V.. Kansas State University; Estados UnidosFil: Wright, Yancy. No especifíca;Fil: Brokesh, Edwin. Kansas State University; Estados UnidosFil: Sharda, Ajay. Kansas State University; Estados UnidosFil: Ciampitti, Ignacio Antonio. Kansas State University; Estados Unido

    Engineering next-generation bioinks with nanoparticles: moving from reinforcement fillers to multifunctional nanoelements

    Get PDF
    The application of additive manufacturing in the biomedical field has become a hot topic in the last decade owing to its potential to provide personalized solutions for patients. Different bioinks have been designed trying to obtain a unique concoction that addresses all the needs for tissue engineering and drug delivery purposes, among others. Despite the remarkable progress made, the development of suitable bioinks which combine printability, cytocompatibility, and biofunctionality is still a challenge. In this sense, the well-established synthetic and functionalization routes to prepare nanoparticles with different functionalities make them excellent candidates to be combined with polymeric systems in order to generate suitable multi-functional bioinks. In this review, we briefly discuss the most recent advances in the design of functional nanocomposite hydrogels considering their already evaluated or potential use as bioinks. The scientific development over the last few years is reviewed, focusing the discussion on the wide range of functionalities that can be incorporated into 3D bioprinted constructs through the addition of multifunctional nanoparticles in order to increase their regenerative potential in the field of tissue engineering.Authors acknowledge financial support from the ERC Grant CoG MagTendon nr 772817; FCT – Fundação para a Ciência e a Tecnologia for the PhD grant of SMB (PD/BD/129403/2017), for the contract to MGF (CEECIND/01375/2017); and for project SmarTendon (PTDC/NAN-MAT/30595/2017). AP is grateful to Xunta de Galicia for his postdoctoral grant ED481B2019/025. Some figures were created with BioRender.com

    A designer's guide to small-scale retro-fit green roof planning, design, and implementation

    Get PDF
    The Kansas Department of Health and Environment (KDHE) provided financial assistance to the Kansas State University Seaton Hall Lower Green Roof Demonstration Project through USEPA Section 319 Nonpoint Source Pollution Control Grant #C9007405 16 Funds (KDHE Funding Codes 3889 2643959) as part of the KDHE Clean Water Neighbor Program

    A designer's guide to bio-retention area planning, design, and implementation

    Get PDF
    The Kansas Department of Health and Environment (KDHE) provided financial assistance to the Sunset Zoo Bio-Retention Area Gardens (K-State Demonstration Project) through USEPA Section 319 Nonpoint Source Pollution Control Grant #C9007405 14 (KDHE Funding Codes 3889 2649598) as part of the KDHE Clean Water Neighbor Program

    Innovative green infrastructure

    No full text
    Describes an urban stormwater management plan for the K-State Center for Child Development building

    Inorganic Biomaterials for Regenerative Medicine

    Full text link

    Native Stone Scenic Byway: Art & Architecture Transcription Archive

    No full text
    Dea "Dede" Brokesh, President of LDB Landscape Architecture & Engineering, LLP, Manhattan, KS, is the Project Director. She developed the idea for the project, wrote the grant, interviewed people, transcribed interviews, wrote a summary report, prepared the slide presentation, and managed the project. The Native Stone Scenic Byway Committee hired LDB to direct the project. Dr. Bonnie Lynn Sherow was hired to advise the NSSBC on the grant application as well as best practices for capturing oral histories. Marsha Ericson, Chair of the Native Stone Scenic Byway Committee, led her volunteers to invite people to the program and was the public speaker of the program. Debbie Bell is the treasurer of the NSSBC. Funding for this project was provided by the Humanities Kansas, a nonprofit cultural organization that connects communities with history, traditions, and ideas to strengthen civic life. Additional time for this project was donated by the Native Stone Scenic Byway Committee, Marsha Ericson, Chair and Dea "Dede" Brokesh, LDB Landscape Architecture & Engineering LLP, Manhattan, KS
    corecore