936 research outputs found
Molar macrowear reveals Neanderthal eco-geographic dietary variation
Neanderthal diets are reported to be based mainly on the consumption of large and medium sized herbivores, while the exploitation of other food types including plants has also been demonstrated. Though some studies conclude that early Homo sapiens were active hunters, the analyses of faunal assemblages, stone tool technologies and stable isotopic studies indicate that they exploited broader dietary resources than Neanderthals. Whereas previous studies assume taxon-specific dietary specializations, we suggest here that the diet of both Neanderthals and early Homo sapiens is determined by ecological conditions. We analyzed molar wear patterns using occlusal fingerprint analysis derived from optical 3D topometry. Molar macrowear accumulates during the lifespan of an individual and thus reflects diet over long periods. Neanderthal and early Homo sapiens maxillary molar macrowear indicates strong eco-geographic dietary variation independent of taxonomic affinities. Based on comparisons with modern hunter-gatherer populations with known diets, Neanderthals as well as early Homo sapiens show high dietary variability in Mediterranean evergreen habitats but a more restricted diet in upper latitude steppe/coniferous forest environments, suggesting a significant consumption of high protein meat resources
Resumption of mass accretion in RS Oph
The latest outburst of the recurrent nova RS Oph occurred in 2006 February. Photometric data presented here show evidence of the resumption of optical flickering, indicating re-establishment of accretion by day 241 of the outburst. Magnitude variations of up to 0.32 mag in V band and 0.14 mag in B band on time-scales of 600–7000 s are detected. Over the two-week observational period, we also detect a 0.5 mag decline in the mean brightness, from V≈ 11.4 to 11.9, and record B≈ 12.9 mag. Limits on the mass accretion rate of [inline image] are calculated, which span the range of accretion rates modelled for direct wind accretion and Roche lobe overflow mechanisms. The current accretion rates make it difficult for thermonuclear runaway models to explain the observed recurrence interval, and this implies average accretion rates are typically higher than seen immediately post-outburst
A Scattered Light Echo around SN 1993J in M81
A light echo around SN 1993J was observed 8.2 years after explosion by a HST
WFPC2 observation, adding to the small family of supernovae with light echoes.
The light echo was formed by supernova light scattered from a dust sheet, which
lies 220 parsecs away from the supernova, 50 parsecs thick along the line of
sight, as inferred from radius and width of the light echo. The dust inferred
from the light echo surface brightness is 1000 times denser than the intercloud
dust. The graphite to silicate fraction can not be determined by our BVI
photometric measurements, however, a pure graphite model can be excluded based
on comparison with the data. With future observations, it will be possible to
measure the expansion rate of the light echo, from which an independent
distance to M81 can be obtained.Comment: 10 pages, 6 figures, in AASTeX format, submitted to ApJ Part
Far-UV Observations of NGC 4151 during the ORFEUS-SPAS II Mission
We observed the Seyfert 1 galaxy NGC 4151 on eleven occasions at 1-2 day
intervals using the Berkeley spectrometer during the ORFEUS-SPAS II mission in
1996 November. The mean spectrum covers 912-1220 A at ~0.3 A resolution with a
total exposure of 15,658 seconds. The mean flux at 1000 A was 4.7e-13
erg/cm^2/s/A. We identify the neutral hydrogen absorption with a number of
components that correspond to the velocity distribution of \ion{H}{1} seen in
our own Galaxy as well as features identified in the CIV 1549 absorption
profile by Weymann et al. The main component of neutral hydrogen in NGC 4151
has a total column density of log N_HI = 18.7 +/- 1.5 cm^{-2} for a Doppler
parameter b=250 +/- 50 km/s, and it covers 84 +/- 6% of the source. This is
consistent with previous results obtained with the Hopkins Ultraviolet
Telescope. Other intrinsic far-UV absorption features are not resolved, but the
CIII* 1176 absorption line has a significantly higher blueshift relative to NGC
4151 than the CIII 977 resonance line. This implies that the highest velocity
region of the outflowing gas has the highest density. Variations in the
equivalent width of the CIII* 1176 absorption line anticorrelate with continuum
variations on timescales of days. For an ionization timescale <1 day, we set an
upper limit of 25 pc on the distance of the absorbing gas from the central
source. The OVI 1034 and HeII 1085 emission lines also vary on timescales of
1-2 days, but their response to the continuum variations is complex. For some
continuum variations they show no response, while for others the response is
instantaneous to the limit of our sampling interval.Comment: 4 pages, 2 PostScript figures, uses emulateapj.sty, apjfonts.sty. To
appear in the Astrophysical Journal (Letters) special issue for ORFEU
Experiment K-6-01. Distribution and biochemistry of mineral and matrix in the femurs of rats
Previous analyses of the composition of mineral and matrix in the bone of young rats following space flight has revealed deficits in calcium, phosphorus, and osteocalcin, a non-collagenous protein, without an associated decrease in collagen. To characterize the location and nature of this mineralization defect in a weight bearing long bone, the femur, researchers attempted to relate the spatial distribution of mineral in situ in the proximal, central and distal thirds of the femoral diaphysis to the biochemical composition of bone from the same area. Biochemical analyses revealed lower concentrations of calcium, phosphorus and osteocalcin but not collagen only in the central third of the diaphysis of the flight animals (F) compared to synchronous controls (S). Collagen concentration was reduced only in the proximal third of the diaphysis, where all 3 crosslinks, expressed as nM/mol collagen were higher in F than S. A new technique, x ray microtomography, with a resolution of 26 microns, was used to obtain semi-quantitative data on mineral distribution in reconstructed sections of wet whole bone. To improve the resolution of the mineral density distribution, images of the surfaces of cut sections were analyzed by backscattered electrons in a scanning electron microscope (BSE). There was good agreement between the results of the two stereochemical techniques which revealed distinct patterns of mineralization in transverse and longitudinal directions of the diaphysis. The novel methodology developed for this flight experiment shows considerable promise in elucidating the biochemical nature of what appear to be regional alterations in the mineralization of long bones of animals exposed to spaceflight
On the Unusual Depletions toward Sk 155, or What Are the Small Magellanic Cloud Dust Grains Made of?
The dust in the Small Magellanic Cloud (SMC), an ideal analog of primordial
galaxies at high redshifts, differs markedly from that in the Milky Way by
exhibiting a steeply rising far-ultraviolet extinction curve, an absence of the
2175 Angstrom extinction feature, and a local minimum at ~12 micron in its
infrared emission spectrum, suggesting the lack of ultrasmall carbonaceous
grains (i.e. polycyclic aromatic hydrocarbon molecules) which are ubiquitously
seen in the Milky Way. While current models for the SMC dust all rely heavily
on silicates, recent observations of the SMC sightline toward Sk 155 indicated
that Si and Mg are essentially undepleted and the depletions of Fe range from
mild to severe, suggesting that metallic grains and/or iron oxides, instead of
silicates, may dominate the SMC dust. However, in this Letter we apply the
Kramers-Kronig relation to demonstrate that neither metallic grains nor iron
oxides are capable of accounting for the observed extinction; silicates remain
as an important contributor to the extinction, consistent with current models
for the SMC dust.Comment: 12 pages, 3 figures; The Astrophysical Journal Letters, in pres
Probing the BLR in AGNs using time variability of associated absorption line
It is know that most of the clouds producing associated absorption in the
spectra of AGNs and quasars do not completely cover the background source
(continuum + broad emission line region, BLR). We note that the covering factor
derived for the absorption is the fraction of photons occulted by the absorbing
clouds, and is not necessarily the same as the fractional area covered. We show
that the variability in absorption lines can be produced by the changes in the
covering factor caused by the variation in the continuum and the finite light
travel time across the BLR. We discuss how such a variability can be
distinguished from the variability caused by other effects and how one can use
the variability in the covering factor to probe the BLR.Comment: 12 pages, latex(aaspp4.sty), 2 figures, (To appear in ApJ
Acceleration and Substructure Constraints in a Quasar Outflow
We present observations of probable line-of-sight acceleration of a broad
absorption trough of C IV in the quasar SDSS J024221.87+004912.6. We also
discuss how the velocity overlap of two other outflowing systems in the same
object constrains the properties of the outflows. The Si IV doublet in each
system has one unblended transition and one transition which overlaps with
absorption from the other system. The residual flux in the overlapping trough
is well fit by the product of the residual fluxes in the unblended troughs. For
these optically thick systems to yield such a result, at least one of them must
consist of individual subunits rather than being a single structure with
velocity-dependent coverage of the source. If these subunits are identical,
opaque, spherical clouds, we estimate the cloud radius to be r = 3.9 10^15 cm.
If they are identical, opaque, linear filaments, we estimate their width to be
w = 6.5 10^14 cm. These subunits are observed to cover the Mg II broad emission
line region of the quasar, at which distance from the black hole the above
filament width is equal to the predicted scale height of the outer atmosphere
of a thin accretion disk. Insofar as that scale height is a natural size scale
for structures originating in an accretion disk, these observations are
evidence that the accretion disk can be a source of quasar absorption systems.
Based on data from ESO program 075.B-0190(A).Comment: 14 emulateapj pages, 7 figures, ApJ in pres
STIS Echelle Observations of the Seyfert Galaxy NGC 4151: Physical Conditions in the Ultraviolet Absorbers
We have examined the physical conditions in intrinsic UV-absorbing gas in the
Seyfert galaxy NGC 4151, using echelle spectra obtained with the Space
Telescope Imaging Spectrograph (STIS). We confirm the presence of the kinematic
components detected in earlier GHRS observations as well as a new broad
absorption feature at a radial velocity of -1680 km/s. The UV continuum of NGC
4151 decreased by a factor of 4 over the previous two years, and we argue the
changes in the column density of the low ionization absorption lines associated
with the broad component at -490 km/s reflect the decrease in the ionizing
flux. Most of the strong absorption lines (e.g., N V, C IV, Si IV) from this
component are saturated, but show substantial residual flux in their cores,
indicating that the absorber does not fully cover the source of emission. Our
interpretation is that the unocculted light is due to scattering by free
electrons from an extended region, which reflects continuum, emission lines,
and absorption lines. We have been able to constrain the densities for the
kinematic components based on absorption lines from metastable states of C III
and Fe II, and/or the ratios of ground and fine structure lines of O I,C II,
and Si II. We have generated a set of photoionization models which match the
ionic column densities for each component during the present low flux state and
those seen in previous high flux states with the GHRS and STIS, confirming that
the absorbers are photoionized and respond to the changes in the continuum
flux. We have been able to map the relative radial positions of the absorbers,
and find that the gas decreases in density with distance. None of the UV
absorbers is of sufficiently large column density or high enough ionization
state to account for the X-ray absorption.Comment: 46 pages (Latex), 14 figures (postscript), plus a landscape table
(Latex), to appear in the Astrophysical Journa
- …
