13 research outputs found

    Effect of a major ice storm on understory light conditions in an old-growth Acer-Fagus forest: Pattern of recovery over seven years

    Get PDF
    We evaluated the effects of a major ice storm on understory light conditions (%PPFD, photosynthetic photon flux density) in an old-growth Acer-Fagus forest in Quebec, based on pre- and post-disturbance light measurements taken until the seventh growing season after the event (which occurred in January 1998). Before the ice storm, most microsites received between 2 and 4%PPFD. Following the ice storm, the stand-level mean %PPFD increased four- to five-fold, ranging from 13.8 to 20.5%PPFD, from 0.3 to 4 m aboveground. Despite its magnitude, the post-ice storm increase in light transmission was short-lived. By 1999 (2-year+), the mean light levels had decreased by half, and recovery to pre-storm conditions occurred within 3-7 years, depending on height. The decrease in light transmission during the post-disturbance years followed an inverse J-shape trend, indicating more dynamic changes early after disturbance. By 2004 (7-year+), light levels at ≤2 m had become slightly but significantly lower than before the ice storm, with most microsites receiving <2%PPFD. The ice storm led to a synchronized increase of the light levels at almost all understory locations, which might allow a high proportion of the advanced regeneration to experience a release. However, due to the rapid recovery of the light conditions to levels similar or lower than before the ice storm, this disturbance should be more advantageous to shade-tolerant species

    How to Start with a Clean Crop: Biopesticide Dips Reduce Populations of Bemisia tabaci (Hemiptera: Aleyrodidae) on Greenhouse Poinsettia Propagative Cuttings

    No full text
    (1) Global movement of propagative plant material is a major pathway for introduction of Bemisia tabaci (Hemiptera: Aleyrodidae) into poinsettia greenhouses. Starting a poinsettia crop with high pest numbers disrupts otherwise successful biological control programs and widespread resistance of B. tabaci against pesticides is limiting growers’ options to control this pest; (2) This study investigated the use of several biopesticides (mineral oil, insecticidal soap, Beauveria bassiana, Isaria fumosorosea, Steinernema feltiae) and combinations of these products as immersion treatments (cutting dips) to control B. tabaci on poinsettia cuttings. In addition, phytotoxicity risks of these treatments on poinsettia cuttings, and effects of treatment residues on mortality of commercial whitefly parasitoids (Eretmocerus eremicus and Encarsia formosa) were determined; (3) Mineral oil (0.1% v/v) and insecticidal soap (0.5%) + B. bassiana (1.25 g/L) were the most effective treatments; only 31% and 29%, respectively, of the treated B. tabaci survived on infested poinsettia cuttings and B. tabaci populations were lowest in these treatments after eight weeks. Phytotoxicity risks of these treatments were acceptable, and dip residues had little effect on survival of either parasitoid, and are considered highly compatible; (4) Use of poinsettia cutting dips will allow growers to knock-down B. tabaci populations to a point where they can be managed successfully thereafter with existing biocontrol strategies
    corecore