5,368 research outputs found
Introducing physician assistants into new roles: International experiences
Conference report: The development of physician assistants (PAs) is a phenomenon that has accelerated since the new century and many countries are involved (1). We report on countries that have recently introduced PAs to identify opportunities for improving the transition. The 35th Annual Physician Assistant Conference of the American Academy of Physician Assistant (AAPA) held in Philadelphia, US, May 26-31, 2007 was attended by almost 8,000 delegates including PAs, students, academics and policy makers. The main purposes of this conference were to promote professional development, develop ideas and provide education. It also featured an international forum focusing on global developments
Distinct regulation of dopamine D2S and D2L autoreceptor signaling by calcium
D2 autoreceptors regulate dopamine release throughout the brain. Two isoforms of the D2 receptor, D2S and D2L, are expressed in midbrain dopamine neurons. Differential roles of these isoforms as autoreceptors are poorly understood. By virally expressing the isoforms in dopamine neurons of D2 receptor knockout mice, this study assessed the calcium-dependence and drug-induced plasticity of D2S and D2L receptor-dependent G protein-coupled inwardly rectifying potassium (GIRK) currents. The results reveal that D2S, but not D2L receptors, exhibited calcium-dependent desensitization similar to that exhibited by endogenous autoreceptors. Two pathways of calcium signaling that regulated D2 autoreceptor-dependent GIRK signaling were identified, which distinctly affected desensitization and the magnitude of D2S and D2L receptor-dependent GIRK currents. Previous in vivo cocaine exposure removed calcium-dependent D2 autoreceptor desensitization in wild type, but not D2S-only mice. Thus, expression of D2S as the exclusive autoreceptor was insufficient for cocaine-induced plasticity, implying a functional role for the co-expression of D2S and D2L autoreceptors
New OH Zeeman measurements of magnetic field strengths in molecular clouds
We present the results of a new survey of 23 molecular clouds for the Zeeman
effect in OH undertaken with the ATNF Parkes 64-m radio telescope and the NRAO
Green Bank 43-m radio telescope. The Zeeman effect was clearly detected in the
cloud associated with the HII region RCW 38, with a field strength of 38+/-3
micro-Gauss, and possibly detected in a cloud associated with the HII region
RCW 57, with a field strength of -203+/-24 micro-Gauss. The remaining 21
measurements give formal upper limits to the magnetic field strength, with
typical 1-sigma sensitivities <20 micro-Gauss. For 22 of the molecular clouds
we are also able to determine thecolumn density of the gas in which we have
made a sensitive search for the Zeeman effect. We combine these results with
previous Zeeman studies of 29 molecular clouds, most of which were compiled by
Crutcher (1999), for a comparsion of theoretical models with the data. This
comparison implies that if the clouds can be modeled as initially spherical
with uniform magnetic fields and densities that evolve to their final
equilibrium state assuming flux-freezing then the typical cloud is magnetically
supercritical, as was found by Crutcher (1999). If the clouds can be modeled as
highly flattened sheets threaded by uniform perpendicular fields, then the
typical cloud is approximately magnetically critical, in agreement with Shu et
al. (1999), but only if the true values of the field for the non-detections are
close to the 3-sigma upper limits. If instead these values are significantly
lower (for example, similar to the 1-sigma limits), then the typical cloud is
generally magnetically supercritical.Comment: 39 pages, 7 figures. Accepted for publication in Ap
Connecting stellar mass and star-formation rate to dark matter halo mass out to z ~ 2
We have constructed an extended halo model (EHM) which relates the total
stellar mass and star-formation rate (SFR) to halo mass (M_h). An empirical
relation between the distribution functions of total stellar mass of galaxies
and host halo mass, tuned to match the spatial density of galaxies over 0<z<2
and the clustering properties at z~0, is extended to include two different
scenarios describing the variation of SFR on M_h. We also present new
measurements of the redshift evolution of the average SFR for star-forming
galaxies of different stellar mass up to z=2, using data from the Herschel
Multi-tiered Extragalactic Survey (HerMES) for infrared-bright galaxies.
Combining the EHM with the halo accretion histories from numerical
simulations, we trace the stellar mass growth and star-formation history in
halos spanning a range of masses. We find that: (1) The intensity of the
star-forming activity in halos in the probed mass range has steadily decreased
from z~2 to 0; (2) At a given epoch, halos in the mass range between a few
times 10^{11} M_Sun and a few times 10^{12} M_Sun are the most efficient at
hosting star formation; (3) The peak of SFR density shifts to lower mass halos
over time; (4) Galaxies that are forming stars most actively at z~2 evolve into
quiescent galaxies in today's group environments, strongly supporting previous
claims that the most powerful starbursts at z~2 are progenitors of today's
elliptical galaxies.Comment: 15 pages, 12 figures, accepted for publication in MNRA
Universality of Sypersymmetric Attractors
The macroscopic entropy-area formula for supersymmetric black holes in
N=2,4,8 theories is found to be universal: in d=4 it is always given by the
square of the largest of the central charges extremized in the moduli space.
The proof of universality is based on the fact that the doubling of unbroken
supersymmetry near the black hole horizon requires that all central charges
other than Z=M vanish at the attractor point for N=4,8. The ADM mass at the
extremum can be computed in terms of duality symmetric quartic invariants which
are moduli independent. The extension of these results for d=5, N=1,2,4 is also
reported. A duality symmetric expression for the energy of the ground state
with spontaneous breaking of supersymmetry is provided by the power 1/2 (2/3)
of the black hole area of the horizon in d=4 (d=5). It is suggested that the
universal duality symmetric formula for the energy of the ground state in
supersymmetric gravity is given by the modulus of the maximal central charge at
the attractor point in any supersymmetric theory in any dimension.Comment: few misprints removed, version to appear in Phys. Rev. 20 pages, 1
figur
Search for Gravitational Wave Bursts from Soft Gamma Repeaters
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first
search sensitive to neutron star f-modes, usually considered the most efficient
GW emitting modes. We find no evidence of GWs associated with any SGR burst in
a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190
lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first
year of LIGO's fifth science run. GW strain upper limits and model-dependent GW
emission energy upper limits are estimated for individual bursts using a
variety of simulated waveforms. The unprecedented sensitivity of the detectors
allows us to set the most stringent limits on transient GW amplitudes published
to date. We find upper limit estimates on the model-dependent isotropic GW
emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52
erg depending on waveform type, detector antenna factors and noise
characteristics at the time of the burst. These upper limits are within the
theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur
Search for gravitational waves from binary inspirals in S3 and S4 LIGO data
We report on a search for gravitational waves from the coalescence of compact
binaries during the third and fourth LIGO science runs. The search focused on
gravitational waves generated during the inspiral phase of the binary
evolution. In our analysis, we considered three categories of compact binary
systems, ordered by mass: (i) primordial black hole binaries with masses in the
range 0.35 M(sun) < m1, m2 < 1.0 M(sun), (ii) binary neutron stars with masses
in the range 1.0 M(sun) < m1, m2 < 3.0 M(sun), and (iii) binary black holes
with masses in the range 3.0 M(sun)< m1, m2 < m_(max) with the additional
constraint m1+ m2 < m_(max), where m_(max) was set to 40.0 M(sun) and 80.0
M(sun) in the third and fourth science runs, respectively. Although the
detectors could probe to distances as far as tens of Mpc, no gravitational-wave
signals were identified in the 1364 hours of data we analyzed. Assuming a
binary population with a Gaussian distribution around 0.75-0.75 M(sun), 1.4-1.4
M(sun), and 5.0-5.0 M(sun), we derived 90%-confidence upper limit rates of 4.9
yr^(-1) L10^(-1) for primordial black hole binaries, 1.2 yr^(-1) L10^(-1) for
binary neutron stars, and 0.5 yr^(-1) L10^(-1) for stellar mass binary black
holes, where L10 is 10^(10) times the blue light luminosity of the Sun.Comment: 12 pages, 11 figure
Implications For The Origin Of GRB 051103 From LIGO Observations
We present the results of a LIGO search for gravitational waves (GWs)
associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst
(GRB) whose electromagnetically determined sky position is coincident with the
spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for
short-hard GRBs include compact object mergers and soft gamma repeater (SGR)
giant flares. A merger progenitor would produce a characteristic GW signal that
should be detectable at the distance of M81, while GW emission from an SGR is
not expected to be detectable at that distance. We found no evidence of a GW
signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission
with a jet semi-angle of 30 deg we exclude a binary neutron star merger in M81
as the progenitor with a confidence of 98%. Neutron star-black hole mergers are
excluded with > 99% confidence. If the event occurred in M81 our findings
support the the hypothesis that GRB 051103 was due to an SGR giant flare,
making it the most distant extragalactic magnetar observed to date.Comment: 8 pages, 3 figures. For a repository of data used in the publication,
go to: https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=15166 . Also see
the announcement for this paper on ligo.org at:
http://www.ligo.org/science/Publication-GRB051103/index.ph
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
All-sky search for periodic gravitational waves in LIGO S4 data
We report on an all-sky search with the LIGO detectors for periodic
gravitational waves in the frequency range 50-1000 Hz and with the frequency's
time derivative in the range -1.0E-8 Hz/s to zero. Data from the fourth LIGO
science run (S4) have been used in this search. Three different semi-coherent
methods of transforming and summing strain power from Short Fourier Transforms
(SFTs) of the calibrated data have been used. The first, known as "StackSlide",
averages normalized power from each SFT. A "weighted Hough" scheme is also
developed and used, and which also allows for a multi-interferometer search.
The third method, known as "PowerFlux", is a variant of the StackSlide method
in which the power is weighted before summing. In both the weighted Hough and
PowerFlux methods, the weights are chosen according to the noise and detector
antenna-pattern to maximize the signal-to-noise ratio. The respective
advantages and disadvantages of these methods are discussed. Observing no
evidence of periodic gravitational radiation, we report upper limits; we
interpret these as limits on this radiation from isolated rotating neutron
stars. The best population-based upper limit with 95% confidence on the
gravitational-wave strain amplitude, found for simulated sources distributed
isotropically across the sky and with isotropically distributed spin-axes, is
4.28E-24 (near 140 Hz). Strict upper limits are also obtained for small patches
on the sky for best-case and worst-case inclinations of the spin axes.Comment: 39 pages, 41 figures An error was found in the computation of the C
parameter defined in equation 44 which led to its overestimate by 2^(1/4).
The correct values for the multi-interferometer, H1 and L1 analyses are 9.2,
9.7, and 9.3, respectively. Figure 32 has been updated accordingly. None of
the upper limits presented in the paper were affecte
- …
