1,644 research outputs found

    Extensive degeneracy, Coulomb phase and magnetic monopoles in an artificial realization of the square ice model

    Full text link
    Artificial spin ice systems have been introduced as a possible mean to investigate frustration effects in a well-controlled manner by fabricating lithographically-patterned two-dimensional arrangements of interacting magnetic nanostructures. This approach offers the opportunity to visualize unconventional states of matter, directly in real space, and triggered a wealth of studies at the frontier between nanomagnetism, statistical thermodynamics and condensed matter physics. Despite the strong efforts made these last ten years to provide an artificial realization of the celebrated square ice model, no simple geometry based on arrays of nanomagnets succeeded to capture the macroscopically degenerate ground state manifold of the corresponding model. Instead, in all works reported so far, square lattices of nanomagnets are characterized by a magnetically ordered ground state consisting of local flux-closure configurations with alternating chirality. Here, we show experimentally and theoretically, that all the characteristics of the square ice model can be observed if the artificial square lattice is properly designed. The spin configurations we image after demagnetizing our arrays reveal unambiguous signatures of an algebraic spin liquid state characterized by the presence of pinch points in the associated magnetic structure factor. Local excitations, i.e. classical analogues of magnetic monopoles, are found to be free to evolve in a massively degenerated, divergence-free vacuum. We thus provide the first lab-on-chip platform allowing the investigation of collective phenomena, including Coulomb phases and ice-like physics.Comment: 26 pages, 10 figure

    iSchools and archival studies

    Get PDF
    Whispers and rumors about the iSchool movement lead some to fear that this represents yet another shift away from the valued traditions of library schools, threatening something far different than what library science pioneers ever envisioned. Predating the iSchool movement, however, were other programmatic shifts such as those that led to the formalization of graduate archival education. This essay argues that such evolution is essential to our future, as iSchools tackle the increasingly complex issues confronting a digital society. We consider the mission and history of iSchools and of archival studies, the basic elements and concepts of archival studies that are critical to iSchools, and the relationship between iSchools and the changing nature of personal and institutional archives. © 2009 Springer Science+Business Media B.V

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Modelling UK house prices with structural breaks and conditional variance analysis

    Get PDF
    This paper differs from previous research by examining the existence of structural breaks in the UK regional house prices as well as in the prices of the different property types (flats, terraced, detached and semi-detached houses) in the UK as a whole, motivated by the uncertainty in the UK housing market and various financial events that may lead to structural changes within the housing market. Our paper enhances the conventional unit root tests by allowing for structural breaks, while including structural break tests strengthens our analysis. Our empirical results support the existence of structural breaks in the mean equation in seven out of thirteen regions of the UK as well as in three out of four property types, and in the variance equation in six regions and three property types. In addition, using a multivariate GARCH approach we examine both the behaviour of variances and covariances of the house price returns over time. Our results have significant implications for appropriate economic policy selection and investment management

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package

    Real-time numerical forecast of global epidemic spreading: Case study of 2009 A/H1N1pdm

    Get PDF
    Background Mathematical and computational models for infectious diseases are increasingly used to support public-health decisions; however, their reliability is currently under debate. Real-time forecasts of epidemic spread using data-driven models have been hindered by the technical challenges posed by parameter estimation and validation. Data gathered for the 2009 H1N1 influenza crisis represent an unprecedented opportunity to validate real-time model predictions and define the main success criteria for different approaches. Methods We used the Global Epidemic and Mobility Model to generate stochastic simulations of epidemic spread worldwide, yielding (among other measures) the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. Using a Monte Carlo Maximum Likelihood analysis, the model provided an estimate of the seasonal transmission potential during the early phase of the H1N1 pandemic and generated ensemble forecasts for the activity peaks in the northern hemisphere in the fall/winter wave. These results were validated against the real-life surveillance data collected in 48 countries, and their robustness assessed by focusing on 1) the peak timing of the pandemic; 2) the level of spatial resolution allowed by the model; and 3) the clinical attack rate and the effectiveness of the vaccine. In addition, we studied the effect of data incompleteness on the prediction reliability. Results Real-time predictions of the peak timing are found to be in good agreement with the empirical data, showing strong robustness to data that may not be accessible in real time (such as pre-exposure immunity and adherence to vaccination campaigns), but that affect the predictions for the attack rates. The timing and spatial unfolding of the pandemic are critically sensitive to the level of mobility data integrated into the model. Conclusions Our results show that large-scale models can be used to provide valuable real-time forecasts of influenza spreading, but they require high-performance computing. The quality of the forecast depends on the level of data integration, thus stressing the need for high-quality data in population-based models, and of progressive updates of validated available empirical knowledge to inform these models

    Cost-effectiveness of a stepped-care intervention to prevent major depression in patients with type 2 diabetes mellitus and/or coronary heart disease and subthreshold depression: design of a cluster-randomized controlled trial

    Get PDF
    Background: Co-morbid major depression is a significant problem among patients with type 2 diabetes mellitus and/or coronary heart disease and this negatively impacts quality of life. Subthreshold depression is the most important risk factor for the development of major depression. Given the highly significant association between depression and adverse health outcomes and the limited capacity for depression treatment in primary care, there is an urgent need for interventions that successfully prevent the transition from subthreshold depression into a major depressive disorder. Nurse led stepped-care is a promising way to accomplish this. The aim of this study is to evaluate the cost-effectiveness of a nurse-led indicated stepped-care program to prevent major depression among patients with type 2 diabetes mellitus and/or coronary heart disease in primary care who also have subthreshold depressive symptoms.Methods/design: An economic evaluation will be conducted alongside a cluster-randomized controlled trial in approximately thirty general practices in the Netherlands. Randomization takes place at the level of participating practice nurses. We aim to include 236 participants who will either receive a nurse-led indicated stepped-care program for depressive symptoms or care as usual. The stepped-care program consists of four sequential but flexible treatment steps: 1) watchful waiting, 2) guided self-help treatment, 3) problem solving treatment and 4) referral to the general practitioner. The primary clinical outcome measure is the cumulative incidence of major depressive disorder as measured with the Mini International Neuropsychiatric Interview. Secondary outcomes include severity of depressive symptoms, quality of life, anxiety and physical outcomes. Costs will be measured from a societal perspective and include health care utilization, medication and lost productivity costs. Measurements will be performed at baseline and 3, 6, 9 and 12 months.Discussion: The intervention being investigated is expected to prevent new cases of depression among people with type 2 diabetes mellitus and/or coronary heart disease and subthreshold depression, with subsequent beneficial effects on quality of life, clinical outcomes and health care costs. When proven cost-effective, the program provides a viable treatment option in the Dutch primary care system.Trial registration: Dutch Trial Register NTR3715. © 2013 van Dijk et al.; licensee BioMed Central Ltd

    Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability

    Get PDF
    Naturally-occurring single α-helices (SAHs), are rich in Arg (R), Glu (E) and Lys (K) residues, and stabilized by multiple salt bridges. Understanding how salt bridges promote their stability is challenging as SAHs are long and their sequences highly variable. Thus, we designed and tested simple de novo 98-residue polypeptides containing 7-residue repeats (AEEEXXX, where X is K or R) expected to promote salt-bridge formation between Glu and Lys/Arg. Lys-rich sequences (EK3 (AEEEKKK) and EK2R1 (AEEEKRK)) both form SAHs, of which EK2R1 is more helical and thermo-stable suggesting Arg increases stability. Substituting Lys with Arg (or vice versa) in the naturally-occurring myosin-6 SAH similarly increased (or decreased) its stability. However, Arg-rich de novo sequences (ER3 (AEEERRR) and EK1R2 (AEEEKRR)) aggregated. Combining a PDB analysis with molecular modelling provides a rational explanation, demonstrating that Glu and Arg form salt bridges more commonly, utilize a wider range of rotamer conformations, and are more dynamic than Glu–Lys. This promiscuous nature of Arg helps explain the increased propensity of de novo Arg-rich SAHs to aggregate. Importantly, the specific K:R ratio is likely to be important in determining helical stability in de-novo and naturally-occurring polypeptides, giving new insight into how single α-helices are stabilized
    corecore