109 research outputs found

    Expression of a Recombinant High Affinity IgG Fc Receptor by Engineered NK Cells as a Docking Platform for Therapeutic mAbs to Target Cancer Cells

    Get PDF
    Anti-tumor mAbs are the most widely used and characterized cancer immunotherapy. Despite having a significant impact on some malignancies, most cancer patients respond poorly or develop resistance to this therapy. A known mechanism of action of these therapeutic mAbs is antibody-dependent cell-mediated cytotoxicity (ADCC), a key effector function of human NK cells. CD16A on human NK cells has an exclusive role in binding to tumor-bound IgG antibodies. Though CD16A is a potent activating receptor, it is also a low affinity IgG Fc receptor (FcγR) that undergoes a rapid downregulation in expression by a proteolytic process involving ADAM17 upon NK cell activation. These regulatory processes are likely to limit the efficacy of tumor-targeting therapeutic mAbs in the tumor environment. We sought to enhance NK cell binding to anti-tumor mAbs by engineering these cells with a recombinant FcγR consisting of the extracellular region of CD64, the highest affinity FcγR expressed by leukocytes, and the transmembrane and cytoplasmic regions of CD16A. This novel recombinant FcγR (CD64/16A) was expressed in the human NK cell line NK92 and in induced pluripotent stem cells from which primary NK cells were derived. CD64/16A lacked the ADAM17 cleavage region in CD16A and it was not rapidly downregulated in expression following NK cell activation during ADCC. CD64/16A on NK cells facilitated conjugation to antibody-treated tumor cells, ADCC, and cytokine production, demonstrating functional activity by its two components. Unlike NK cells expressing CD16A, CD64/16A captured soluble therapeutic mAbs and the modified NK cells mediated tumor cell killing. Hence, CD64/16A could potentially be used as a docking platform on engineered NK cells for therapeutic mAbs and IgG Fc chimeric proteins, allowing for switchable targeting elements and a novel cancer cellular therapy

    The high affinity selectin glycan ligand C2-O-sLex and mRNA transcripts of the core 2 β-1,6-N-acetylglusaminyltransferase (C2GnT1) gene are highly expressed in human colorectal adenocarcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The metastasis of cancer cells and leukocyte extravasation into inflamed tissues share common features. Specialized carbohydrates modified with sialyl Lewis x (sLe<sup>x</sup>) antigens on leukocyte membranes are ligands for selectin adhesion molecules on activated vascular endothelial cells at inflammatory sites. The activity of the enzyme core 2 β1,6 <it>N</it>-acetylglucosaminyltransferase (C2GnT1) in leukocytes greatly increases their ability to bind to endothelial selectins. C2GnT1 is essential for the synthesis of core 2-branched O-linked carbohydrates terminated with sLe<sup>x </sup>(C2-O-sLe<sup>x</sup>). Our goal was to determine the expression profiles of C2-O-sLe<sup>x </sup>in the malignant progression and metastasis of colorectal adenocarcinomas. The well characterized CHO-131 monoclonal antibody (mAb) specifically recognizes C2-O-sLe<sup>x </sup>present in human leukocytes and carcinoma cells. Using CHO-131 mAb, we investigated whether C2-O-sLe<sup>x </sup>was present in 113 human primary colorectal adenocarcinomas, 10 colorectal adenomas, 46 metastatic liver tumors, 28 normal colorectal tissues, and 5 normal liver tissues by immunohistochemistry. We also examined mRNA levels of the enzyme core 2 β1,6-<it>N</it>-acetylglucosaminyltransferase (C2GnT1) in 20 well, 15 moderately, and 2 poorly differentiated colorectal adenocarcinomas, and in 5 normal colorectal tissues by using quantitative real-time polymerase chain reactions (RT-PCR).</p> <p>Results</p> <p>We observed high reactivity with CHO-131 mAb in approximately 70% of colorectal carcinomas and 87% of metastatic liver tumors but a lack of reactivity in colorectal adenomas and normal colonic and liver tissues. Positive reactivity with CHO-131 mAb was very prominent in neoplastic colorectal glands of well to moderately differentiated adenocarcinomas. The most intense staining with CHO-131 mAb was observed at the advancing edge of tumors with the deepest invasive components.</p> <p>Finally, we analyzed C2GnT1 mRNA levels in 37 colorectal adenocarcinomas and 5 normal colorectal tissues by RT-PCR. Significantly, we observed a greater than 15-fold increase in C2GnT1 mRNA levels in colorectal adenocarcinomas compared to normal colorectal tissues.</p> <p>Conclusion</p> <p>C2-O-sLe<sup>x</sup>, detected by the CHO-131 mAb, is a tumor associated antigen whose expression is highly upregulated in colorectal adenocarcinomas and metastatic liver tumors compared to normal tissues. C2-O-sLe<sup>x </sup>is a potentially useful early predictor of metastasis.</p

    The C-Terminal Domain of the Novel Essential Protein Gcp Is Critical for Interaction with Another Essential Protein YeaZ of Staphylococcus aureus

    Get PDF
    Previous studies have demonstrated that the novel protein Gcp is essential for the viability of various bacterial species including Staphylococcus aureus; however, the reason why it is required for bacterial growth remains unclear. In order to explore the potential mechanisms of this essentiality, we performed RT-PCR analysis and revealed that the gcp gene (sa1854) was co-transcribed with sa1855, yeaZ (sa1856) and sa1857 genes, indicating these genes are located in the same operon. Furthermore, we demonstrated that Gcp interacts with YeaZ using a yeast two-hybrid (Y2H) system and in vitro pull down assays. To characterize the Gcp-YeaZ interaction, we performed alanine scanning mutagenesis on the residues of C-terminal segment of Gcp. We found that the mutations of the C-terminal Y317-F322 region abolished the interaction of Gcp and YeaZ, and the mutations of the D324-N329 and S332-Y336 regions alleviated Gcp binding to YeaZ. More importantly, we demonstrated that these key regions of Gcp are also necessary for the bacterial survival since these mutated Gcp could not complement the depletion of endogenous Gcp. Taken together, our data suggest that the interaction of Gcp and YeaZ may contribute to the essentiality of Gcp for S. aureus survival. Our findings provide new insights into the potential mechanisms and biological functions of this novel essential protein

    Leukocyte ADAM17 Regulates Acute Pulmonary Inflammation

    Get PDF
    The transmembrane protease ADAM17 regulates the release and density of various leukocyte cell surface proteins that modulate inflammation, including L-selectin, TNF-α, and IL-6R. At this time, its in vivo substrates and role in pulmonary inflammation have not been directly examined. Using conditional ADAM17 knock-out mice, we investigated leukocyte ADAM17 in acute lung inflammation. Alveolar TNF-α levels were significantly reduced (>95%) in ADAM17-null mice following LPS administration, as was the shedding of L-selectin, a neutrophil-expressed adhesion molecule. Alveolar IL-6R levels, however, were reduced by only ≈25% in ADAM17-null mice, indicating that ADAM17 is not its primary sheddase in our model. Neutrophil infiltration into the alveolar compartment is a key event in the pathophysiology of acute airway inflammation. Following LPS inhalation, alveolar neutrophil levels and lung inflammation in ADAM17-null mice were overall reduced when compared to control mice. Interestingly, however, neutrophil recruitment to the alveolar compartment occurred earlier in ADAM17-null mice after exposure to LPS. This decrease in alveolar neutrophil recruitment in ADAM17-null mice was accompanied by significantly diminished alveolar levels of the neutrophil-tropic chemokines CXCL1 and CXCL5. Altogether, our study suggests that leukocyte ADAM17 promotes inflammation in the lung, and thus this sheddase may be a potential target in the design of pharmacologic therapies for acute lung injury

    iNK-CD64/16A cells: a promising approach for ADCC?

    Full text link

    The Contribution of L-Selectin to Leukocyte Trafficking In Vivo

    Full text link

    ADAM17 deficiency by mature neutrophils has differential effects on L-selectin shedding (97.14)

    Full text link
    Abstract L-selectin directs neutrophils to sites of inflammation, and upon their activation, surface expression of the receptor is rapidly downregulated by ectodomain shedding. ADAM17 (also known as Tumor necrosis factor-alpha-converting enzyme or TACE) is a sheddase of L-selectin; however, Adam17 gene-targeting (ADAM17−/−) in mice is perinatal lethal and its role in L-selectin shedding by mature leukocytes has not been determined. This issue was addressed here by generating radiation-chimeric mice reconstituted with ADAM17−/−fetal liver progenitor cells. ADAM17-deficient neutrophils, monocytes and lymphocytes failed to shed L-selectin in response to PMA, as did neutrophils infiltrating the inflamed peritoneum. In addition, the lack of functional ADAM17 resulted in significantly increased levels of L-selectin surface expression by leukocytes in peripheral blood, suggesting the sheddase is also involved in the constitutive cleavage of L-selectin. Interestingly, it seems that ADAM17 is not required in all manners of L-selectin turnover. Plasma levels of soluble L-selectin were similar between ADAM17−/−chimeric and control mice, as was the shedding of L-selectin by neutrophils undergoing apoptosis. The latter process, however, was diminished by a metalloprotease inhibitor (TAPI-0), indicating the involvement of a metalloprotease sheddase other than ADAM17. Our data is the first to demonstrate that L-selectin’s surface density on neutrophils is regulated by ADAM17, but homeostatic cleavage of L-selectin is not. This work is supported by grant HL61613 (B.W.) from the National Institutes of Health.</jats:p

    Neutrophil Function

    No full text
    corecore