511 research outputs found
Density of dopaminergic fibres in the prefrontal cortex of gerbils is sensitive to aging
Brummelte S, Teuchert-Noodt G. Density of dopaminergic fibres in the prefrontal cortex of gerbils is sensitive to aging. Behavioral and Brain Functions. 2007;3(1): 14.Mesencephalic dopamine (DA) projections are essential for cognitive and behavioral functions and believed to play a critical role during development and aging. The dopaminergic afferents of the rodent prefrontal cortex (PFC) show an extremely prolonged maturation which is very sensitive to epigenetic challenges. However, less is known about the long-term maturation and aging of these DA axons. Therefore, immunohistochemically stained DA fibres were quantitatively examined in the PFC of the Mongolian gerbil (Meriones unguiculatus) ranging from 6 to 24 months of age. Results show a decrease in DA fibre densities in the superficial layers of the PFC in 24 month old animals compared to 6 and 12 months
Stress in parents of children born very preterm is predicted by child externalising behaviour and parent coping at age 7 years
Objective: To examine factors which predict parenting stress in a longitudinal cohort of children born very preterm seen at age seven years.Methods: We recruited 100 very preterm (< 32 weeks GA) child-parent dyads and a control group of 50 term-born dyads born between 2001 and 2004 with follow-up at seven years. Parents completed the Parenting Stress Index, Ways of Coping Questionnaire, Child Behavior Check List, Beck Depression Inventory and the State Trait Anxiety Inventory questionnaires. Child IQ was assessed using the Wechsler Intelligence Scale-IV.Results: After controlling for maternal education, parents of preterm children (95% CI, 111.1 to 121.4) scored higher (p = .027) on the Parenting Stress Index than term born controls (95% CI, 97.8 to 113.2). Regression analyses showed that child externalising behaviour, sex and parent escape/avoidance coping style, predicted higher parenting stress in the preterm group. Parents of preterm girls expressed higher levels of stress than those of boys. Conclusions: Maladaptive coping strategies contribute to greater stress in parents of very preterm children. Our findings suggest that these parents need support for many years after birth of a very preterm infant
Neonatal Pain-Related Stress and NFKBIA Genotype Are Associated with Altered Cortisol Levels in Preterm Boys at School Age
Neonatal pain-related stress is associated with elevated salivary cortisol levels to age 18 months in children born very preterm, compared to full-term, suggesting early programming effects. Importantly, interactions between immune/inflammatory and neuroendocrine systems may underlie programming effects. We examined whether cortisol changes persist to school age, and if common genetic variants in the promoter region of the NFKBIA gene involved in regulation of immune and inflammatory responses, modify the association between early experience and later life stress as indexed by hair cortisol levels, which provide an integrated index of endogenous HPA axis activity. Cortisol was assayed in hair samples from 128 children (83 born preterm ≤ 32 weeks gestation and 45 born full-term) without major sensory, motor or cognitive impairments at age 7 years. We found that hair cortisol levels were lower in preterm compared to term-born children. Downregulation of the HPA axis in preterm children without major impairment, seen years after neonatal stress terminated, suggests persistent alteration of stress system programming. Importantly, the etiology was gender-specific such that in preterm boys but not girls, specifically those with the minor allele for NFKBIA rs2233409, lower hair cortisol was associated with greater neonatal pain (number of skin-breaking procedures from birth to term), independent of medical confounders. Moreover, the minor allele (CT or TT) of NFKBIA rs2233409 was associated with higher secretion of inflammatory cytokines, supporting the hypothesis that neonatal pain-related stress may act as a proinflammatory stimulus that induces long-term immune cell activation. These findings are the first evidence that a long-term association between early pain-related stress and cortisol may be mediated by a genetic variants that regulate the activity of NF-κB, suggesting possible involvement of stress/inflammatory mechanisms in HPA programming in boys born very preterm
Recommended from our members
Corticotropin-releasing hormone as the homeostatic rheostat of feto-maternal symbiosis and developmental programming In utero and neonatal life
A balanced interaction between the homeostatic mechanisms of mother and the devel- oping organism during pregnancy and in early neonatal life is essential in order to ensure optimal fetal development, ability to respond to various external and internal challenges, protection from adverse programming, and safeguard maternal care availability after parturition. In the majority of pregnancies, this relationship is highly effective resulting in successful outcomes. However, in a number of pathological settings, perturbations of the maternal homeostasis disrupt this symbiosis and initiate adaptive responses with unpre- dictable outcomes for the fetus or even the neonate. This may lead to development of pathological phenotypes arising from developmental reprogramming involving interaction of genetic, epigenetic, and environmental-driven pathways, sometimes with acute conse- quences (e.g., growth impairment) and sometimes delayed (e.g., enhanced susceptibility to disease) that last well into adulthood. Most of these adaptive mechanisms are activated and controlled by hormones of the hypothalamo-pituitary adrenal axis under the influ- ence of placental steroid and peptide hormones. In particular, the hypothalamic peptide corticotropin-releasing hormone (CRH) plays a key role in feto-maternal communication by orchestrating and integrating a series of neuroendocrine, immune, metabolic, and behavioral responses. CRH also regulates neural networks involved in maternal behavior and this determines efficiency of maternal care and neonate interactions. This review will summarize our current understanding of CRH actions during the perinatal period, focusing on the physiological roles for both mother and offspring and also how external challenges can alter CRH actions and potentially impact on fetus/neonate health
Artificial feeding synchronizes behavioral, hormonal, metabolic and neural parameters in mother‐deprived neonatal rabbit pups
Nursing in the rabbit is under circadian control, and pups have a daily anticipatory behavioral arousal synchronized to this unique event, but it is not known which signal is the main entraining cue. In the present study, we hypothesized that food is the main entraining signal. Using mother‐deprived pups, we tested the effects of artificial feeding on the synchronization of locomotor behavior, plasma glucose, corticosterone, c‐Fos (FOS) and PERIOD1 (PER1) rhythms in suprachiasmatic, supraoptic, paraventricular and tuberomammillary nuclei. At postnatal day 1, an intragastric tube was placed by gastrostomy. The next day and for the rest of the experiment, pups were fed with a milk formula through the cannula at either 02:00 h or 10:00 h [feeding time = zeitgeber time (ZT)0]. At postnatal days 5–7, pups exhibited behavioral arousal, with a significant increase in locomotor behavior 60 min before feeding. Glucose levels increased after feeding, peaking at ZT4–ZT12 and then declining. Corticosterone levels were highest around the time of feeding, and then decreased to trough concentrations at ZT12–ZT16, increasing again in anticipation of the next feeding bout. In the brain, the suprachiasmatic nucleus had a rhythm of FOS and PER1 that was not significantly affected by the feeding schedule. Conversely, the supraoptic, paraventricular and tuberomammillary nuclei had rhythms of both FOS and PER1 induced by the time of scheduled feeding. We conclude that the nursing rabbit pup is a natural model of food entrainment, as food, in this case milk formula, is a strong synchronizing signal for behavioral, hormonal, metabolic and neural parameters. Nursing in the rabbit is under circadian control, and pups have a daily anticipatory behavioral arousal synchronized to this unique event, but it is not known which signal is the main entraining cue. In the present study, we hypothesized that food is the main entraining signal.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/88087/1/j.1460-9568.2011.07898.x.pd
Nutritive value of unconventional fibrous ingredients fed to Guinea pigs in the Democratic Republic of Congo
peer reviewedThe energy and protein value for Guinea pigs (GP) of 9 forages (7 dicots and 2 grasses) and 5 hay-based diets was determined. The apparent faecal digestibility of dry matter, organic matter, crude protein and energy was measured on GP housed in metabolic cages. The forages and the diets were digested in vitro using pepsin and pancreatin hydrolysis and gas fermentation test to simulate stomach, small intestine and large intestine, respectively. Most of the dicots had high digestible crude protein content (152–201 g/kg DM) and the 2 grasses showed lower values (80–85 g/kg DM). Digestible energy content of the forages ranged between 5.79 to 13.08 MJ/kg DM. None of the forage species or hay-based diets provided sufficient energy to supply the 11.7 MJ/kg metabolic energy requirements. The influence of intestinal fermentation on energy and protein values was highlighted by correlations (P<0.05) between in vivo and in vitro data, including gas fermentation. It is the first time that such relationships are reported in single-stomach animals
Long-term effects of a single adult methamphetamine challenge: Minor impact on dopamine fibre density in limbic brain areas of gerbils
BACKGROUND: The aim of the study was to test long-term effects of (+)-methamphetamine (MA) on the dopamine (DA) innervation in limbo-cortical regions of adult gerbils, in order to understand better the repair and neuroplasticity in disturbed limbic networks. METHODS: Male gerbils received a single high dose of either MA (25 mg/kg i.p.) or saline on postnatal day 180. On postnatal day 340 the density of immunoreactive DA fibres and calbindin and parvalbumin cells was quantified in the right hemisphere. RESULTS: No effects were found in the prefrontal cortex, olfactory tubercle and amygdala, whereas the pharmacological impact induced a slight but significant DA hyperinnervation in the nucleus accumbens. The cell densities of calbindin (CB) and parvalbumin (PV) positive neurons were additionally tested in the nucleus accumbens, but no significant effects were found. The present results contrast with the previously published long-term effects of early postnatal MA treatment that lead to a restraint of the maturation of DA fibres in the nucleus accumbens and prefrontal cortex and a concomitant overshoot innervation in the amygdala. CONCLUSION: We conclude that the morphogenetic properties of MA change during maturation and aging of gerbils, which may be due to physiological alterations of maturing vs. mature DA neurons innervating subcortical and cortical limbic areas. Our findings, together with results from other long-term studies, suggest that immature limbic structures are more vulnerable to persistent effects of a single MA intoxication; this might be relevant for the assessment of drug experience in adults vs. adolescents, and drug prevention programs
Sex-specific disruption of murine midbrain astrocytic and dopaminergic developmental trajectories following antenatal GC treatment
The mammalian midbrain dopaminergic systems arising in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) are critical for coping behaviours and are implicated in neuropsychiatric disorders where early life challenges comprise significant risk factors. Here, we aimed to advance our hypothesis that glucocorticoids (GCs), recognised key players in neurobiological programming, target development within these systems, with a novel focus on the astrocytic population. Mice received antenatal GC treatment (AGT) by including the synthetic GC, dexamethasone, in the mothers' drinking water on gestational days 16-19; controls received normal drinking water. Analyses of regional shapes and volumes of the adult SNc and VTA demonstrated that AGT induced long-term, dose-dependent, structural changes that were accompanied by profound effects on astrocytes (doubling/tripling of numbers and/or density). Additionally, AGT induced long-term changes in the population size and distribution of SNc/VTA dopaminergic neurons, confirming and extending our previous observations made in rats. Furthermore, glial/neuronal structural remodelling was sexually dimorphic and depended on the AGT dose and sub-region of the SNc/VTA. Investigations within the neonatal brain revealed that these long-term organisational effects of AGT depend, at least in part, on targeting perinatal processes that determine astrocyte density and programmed cell death in dopaminergic neurons. Collectively, our characterisation of enduring, AGT-induced, sex-specific cytoarchitectural disturbances suggests novel mechanistic links for the strong association between early environmental challenge (inappropriate exposure to excess GCs) and vulnerability to developing aberrant behaviours in later life, with translational implications for dopamine-associated disorders (such as schizophrenia, ADHD, autism, depression), which typically show a sex bia
Antenatal glucocorticoid treatment induces adaptations in adult midbrain dopamine neurons, which underpin sexually dimorphic behavioral resilience
We demonstrated previously that antenatal glucocorticoid treatment (AGT, gestational days 16-19) altered the size and organization of the adult rat midbrain dopaminergic (DA) populations. Here we investigated the consequences of these AGT-induced cytoarchitectural disturbances on indices of DA function in adult rats. We show that in adulthood, enrichment of striatal DA fiber density paralleled AGT-induced increases in the numbers of midbrain DA neurons, which retained normal basal electrophysiological properties. This was co-incident with changes in (i) striatal D2-type receptor levels (increased, both sexes); (ii) D1-type receptor levels (males decreased; females increased); (iii) DA transporter levels (males increased; females decreased) in striatal regions; and (iv) amphetamine-induced mesolimbic DA release (males increased; females decreased). However, despite these profound, sexually dimorphic changes in markers of DA neurotransmission, in-utero glucocorticoid overexposure had a modest or no effect on a range of conditioned and unconditioned appetitive behaviors known to depend on mesolimbic DA activity. These findings provide empirical evidence for enduring AGT-induced adaptive mechanisms within the midbrain DA circuitry, which preserve some, but not all, functions, thereby casting further light on the vulnerability of these systems to environmental perturbations. Furthermore, they demonstrate these effects are achieved by different, often opponent, adaptive mechanisms in males and females, with translational implications for sex biases commonly found in midbrain DA-associated disorders
Recommended from our members
A systematic review of the effects of prolonged cow-calf contact on behavior, welfare, and productivity
Separation of calves from cows within hours or days of birth is common on dairy farms. Stakeholders have conflicting perspectives on whether this is harmful or beneficial for the animals’ welfare and production. Our objective was to critically evaluate the scientific evidence for both acute and long-term effects of early separation versus an extended period of cow-calf contact. The outcomes investigated were the behavior, welfare (excluding physical health) and performance (milk yield and growth, respectively) of dairy cows and calves. Primary research papers were found through targeted Web of Science searches, the reference lists of recent reviews for each topic, and the reference lists of papers identified from these sources. Studies were included if they were published in English, the full text was accessible, and they compared treatments with and without contact between dairy cows and calves for a specified period. Early separation (within 24 h post-partum) was found to reduce acute distress responses of cows and calves. However, longer cow-calf contact typically had positive longer-term effects on calves, promoting more normal social behavior, reducing abnormal behavior and sometimes reducing responses to stressors. In terms of productivity, allowing cows to nurse calves generally decreased the volume of milk available for sale during the nursing period, but there was no consistent evidence of reduced milk production over a longer period. Allowing a prolonged period of nursing increased calf weight gains during the milk-feeding period. In summary, extended cow-calf contact aggravates the acute distress responses and reduces the amount of saleable milk while the calves are suckling, but can have positive effects on behaviors relevant to welfare in the longer term and benefit calf growth. The strength of these conclusions is limited, however, given that relatively few studies address most of these effects and that experimental design including timing of contact and observations are often inconsistent across studies. Few studies presented indicators of long-term welfare effects other than abnormal and social behavior of the calves
- …
