1,515 research outputs found

    Threshold cascades with response heterogeneity in multiplex networks

    Full text link
    Threshold cascade models have been used to describe spread of behavior in social networks and cascades of default in financial networks. In some cases, these networks may have multiple kinds of interactions, such as distinct types of social ties or distinct types of financial liabilities; furthermore, nodes may respond in different ways to in influence from their neighbors of multiple types. To start to capture such settings in a stylized way, we generalize a threshold cascade model to a multiplex network in which nodes follow one of two response rules: some nodes activate when, in at least one layer, a large enough fraction of neighbors are active, while the other nodes activate when, in all layers, a large enough fraction of neighbors are active. Varying the fractions of nodes following either rule facilitates or inhibits cascades. Near the inhibition regime, global cascades appear discontinuously as the network density increases; however, the cascade grows more slowly over time. This behavior suggests a way in which various collective phenomena in the real world could appear abruptly yet slowly.Comment: 7 pages, 6 figure

    Inside Money, Procyclical Leverage, and Banking Catastrophes

    Get PDF
    We explore a model of the interaction between banks and outside investors in which the ability of banks to issue inside money (short-term liabilities believed to be convertible into currency at par) can generate a collapse in asset prices and widespread bank insolvency. The banks and investors share a common belief about the future value of certain long-term assets, but they have different objective functions; changes to this common belief result in portfolio adjustments and trade. Positive belief shocks induce banks to buy risky assets from investors, and the banks finance those purchases by issuing new short-term liabilities. Negative belief shocks induce banks to sell assets in order to reduce their chance of insolvency to a tolerably low level, and they supply more assets at lower prices, which can result in multiple market-clearing prices. A sufficiently severe negative shock causes the set of equilibrium prices to contract (in a manner given by a cusp catastrophe), causing prices to plummet discontinuously and banks to become insolvent. Successive positive and negative shocks of equal magnitude do not cancel; rather, a banking catastrophe can occur even if beliefs simply return to their initial state. Capital requirements can prevent crises by curtailing the expansion of balance sheets when beliefs become more optimistic, but they can also force larger price declines. Emergency asset price supports can be understood as attempts by a central bank to coordinate expectations on an equilibrium with solvency.Comment: 31 pages, 10 figure

    Jigsaw percolation: What social networks can collaboratively solve a puzzle?

    Get PDF
    We introduce a new kind of percolation on finite graphs called jigsaw percolation. This model attempts to capture networks of people who innovate by merging ideas and who solve problems by piecing together solutions. Each person in a social network has a unique piece of a jigsaw puzzle. Acquainted people with compatible puzzle pieces merge their puzzle pieces. More generally, groups of people with merged puzzle pieces merge if the groups know one another and have a pair of compatible puzzle pieces. The social network solves the puzzle if it eventually merges all the puzzle pieces. For an Erd\H{o}s-R\'{e}nyi social network with nn vertices and edge probability pnp_n, we define the critical value pc(n)p_c(n) for a connected puzzle graph to be the pnp_n for which the chance of solving the puzzle equals 1/21/2. We prove that for the nn-cycle (ring) puzzle, pc(n)=Θ(1/logn)p_c(n)=\Theta(1/\log n), and for an arbitrary connected puzzle graph with bounded maximum degree, pc(n)=O(1/logn)p_c(n)=O(1/\log n) and ω(1/nb)\omega(1/n^b) for any b>0b>0. Surprisingly, with probability tending to 1 as the network size increases to infinity, social networks with a power-law degree distribution cannot solve any bounded-degree puzzle. This model suggests a mechanism for recent empirical claims that innovation increases with social density, and it might begin to show what social networks stifle creativity and what networks collectively innovate.Comment: Published at http://dx.doi.org/10.1214/14-AAP1041 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A New Subspecies of Calystegia collina (Greene) Brummitt (Convolvulaceae) in the Coast Ranges of California and Notes on the Distribution of the Species

    Get PDF
    Calystegia collina occurs in the Coast Ranges of California from Lake County to Santa Barbara County and is considered closely related to, but specifically separable from, C. malacophylla. The northernmost taxon in the C. collina complex, subsp. tridactylosa, differs from other taxa in significant morphological characters and is geographically disjunct. Further investigation may suggest that subspecies tridactylosa should be elevated to the rank of species. The contiguous distributions of subspecies collina and oxyphylla are detailed, and subspecific rank is justified based on morphological considerations despite range overlap and the existence of some intermediates. Subspecies apicum, formerly included in subspecies venusta based on sepal similarity, is segregated based on differences in leaf margin morphology, leaf size, and overall differences in pubescence. The revised concept of subspecies venusta only includes plants with strongly sinuate leaf margins

    Controlling Self-Organizing Dynamics on Networks Using Models that Self-Organize

    Full text link
    Controlling self-organizing systems is challenging because the system responds to the controller. Here we develop a model that captures the essential self-organizing mechanisms of Bak-Tang-Wiesenfeld (BTW) sandpiles on networks, a self-organized critical (SOC) system. This model enables studying a simple control scheme that determines the frequency of cascades and that shapes systemic risk. We show that optimal strategies exist for generic cost functions and that controlling a subcritical system may drive it to criticality. This approach could enable controlling other self-organizing systems.Comment: 5 pages main text; 16 pages supplemental materia
    corecore