179 research outputs found

    T Lymphocyte Immunity in Host Defence against Chlamydia trachomatis and Its Implication for Vaccine Development

    Get PDF
    Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes several significant human infectious diseases, including trachoma, urethritis, cervicitis and salpingitis, and is an important cofactor for transmission of human immunodeficiency virus. Until very recently, over three decades of research effort aimed at developing a C trachomatis vaccine had failed, due mainly to the lack of a precise understanding of the mechanisms for protective immunity. Although most studies concerning protective immunity to C trachomatis have focused on humoral immune responses, recent studies have clearly shown that T helper-1 (Th1)-like CD4 T cell-mediated immune responses play the dominant role in protective immunity. These studies suggest a paradigm for chlamydial immunity and pathology based on the concept of heterogeneity (Th1/Th2) in CD4 T cell immune responses. This concept for chlamydial immunity offers a rational template on which to base renewed efforts for development of a chlamydial vaccine that targets the induction of cell-mediated Th1 immune responses.Peer Reviewe

    Human Female Genital Tract Infection by the Obligate Intracellular Bacterium Chlamydia trachomatis Elicits Robust Type 2 Immunity

    Get PDF
    While Chlamydia trachomatis infections are frequently asymptomatic, mechanisms that regulate host response to this intracellular Gram-negative bacterium remain undefined. This investigation thus used peripheral blood mononuclear cells and endometrial tissue from women with or without Chlamydia genital tract infection to better define this response. Initial genome-wide microarray analysis revealed highly elevated expression of matrix metalloproteinase 10 and other molecules characteristic of Type 2 immunity (e.g., fibrosis and wound repair) in Chlamydia-infected tissue. This result was corroborated in flow cytometry and immunohistochemistry studies that showed extant upper genital tract Chlamydia infection was associated with increased co-expression of CD200 receptor and CD206 (markers of alternative macrophage activation) by endometrial macrophages as well as increased expression of GATA-3 (the transcription factor regulating TH2 differentiation) by endometrial CD4+ T cells. Also among women with genital tract Chlamydia infection, peripheral CD3+ CD4+ and CD3+ CD4- cells that proliferated in response to ex vivo stimulation with inactivated chlamydial antigen secreted significantly more interleukin (IL)-4 than tumor necrosis factor, interferon-γ, or IL-17; findings that repeated in T cells isolated from these same women 1 and 4 months after infection had been eradicated. Our results thus newly reveal that genital infection by an obligate intracellular bacterium induces polarization towards Type 2 immunity, including Chlamydia-specific TH2 development. Based on these findings, we now speculate that Type 2 immunity was selected by evolution as the host response to C. trachomatis in the human female genital tract to control infection and minimize immunopathological damage to vital reproductive structures. © 2013 Vicetti Miguel et al

    Ethical and legal implications of whole genome and whole exome sequencing in African populations

    Get PDF
    BACKGROUND: Rapid advances in high throughput genomic technologies and next generation sequencing are making medical genomic research more readily accessible and affordable, including the sequencing of patient and control whole genomes and exomes in order to elucidate genetic factors underlying disease. Over the next five years, the Human Heredity and Health in Africa (H3Africa) Initiative, funded by the Wellcome Trust (United Kingdom) and the National Institutes of Health (United States of America), will contribute greatly towards sequencing of numerous African samples for biomedical research. DISCUSSION: Funding agencies and journals often require submission of genomic data from research participants to databases that allow open or controlled data access for all investigators. Access to such genotype-phenotype and pedigree data, however, needs careful control in order to prevent identification of individuals or families. This is particularly the case in Africa, where many researchers and their patients are inexperienced in the ethical issues accompanying whole genome and exome research; and where an historical unidirectional flow of samples and data out of Africa has created a sense of exploitation and distrust. In the current study, we analysed the implications of the anticipated surge of next generation sequencing data in Africa and the subsequent data sharing concepts on the protection of privacy of research subjects. We performed a retrospective analysis of the informed consent process for the continent and the rest-of-the-world and examined relevant legislation, both current and proposed. We investigated the following issues: (i) informed consent, including guidelines for performing culturally-sensitive next generation sequencing research in Africa and availability of suitable informed consent documents; (ii) data security and subject privacy whilst practicing data sharing; (iii) conveying the implications of such concepts to research participants in resource limited settings. SUMMARY: We conclude that, in order to meet the unique requirements of performing next generation sequencing-related research in African populations, novel approaches to the informed consent process are required. This will help to avoid infringement of privacy of individual subjects as well as to ensure that informed consent adheres to acceptable data protection levels with regard to use and transfer of such information

    Acquired homotypic and heterotypic immunity against oculogenital Chlamydia trachomatis serovars following female genital tract infection in mice

    Get PDF
    BACKGROUND: Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen causing female genital tract infection throughout the world. Reinfection with the same serovar, as well as multiple infections with different serovars, occurs in humans. Using a murine model of female C. trachomatis genital tract infection, we determined if homotypic and/or heterotypic protection against reinfection was induced following infection with human oculogenital strains of C. trachomatis belonging to two serovars (D and H) that have been shown to vary significantly in the course of infection in the murine model. METHODS: Groups of outbred CF-1 mice were reinfected intravaginally with a strain of either serovar D or H, two months after initial infection with these strains. Cellular immune and serologic status, both quantitative and qualitative, was assessed following initial infection, and the course of infection was monitored by culturing vaginal samples collected every 2–7 days following reinfection. RESULTS: Serovar D was both more virulent (longer duration of infection) and immunogenic (higher level of circulating and vaginal IgG and higher incidence of IgA in vaginal secretions) in the mouse genital tract. Although both serovars induced cross-reacting antibodies during the course of primary infection, prior infection with serovar H resulted in only a slight reduction in the median duration of infection against homotypic reinfection (p ~ 0.10), while prior infection with serovar D resulted in significant reduction in the median duration of infection against both homotypic (p < 0.01) and heterotypic reinfection (p < 0.01) when compared to primary infection in age and conditions matched controls. CONCLUSION: Serovar D infection resulted in significant homotypic and heterotypic protection against reinfection, while primary infection with serovar H resulted in only slight homotypic protection. In addition to being the first demonstration of acquired heterotypic immunity between human oculogenital serovars, the differences in the level and extent of this immunity could in part explain the stable difference in serovar prevalence among human isolates

    A Probiotic Adjuvant Lactobacillus rhamnosus Enhances Specific Immune Responses after Ocular Mucosal Immunization with Chlamydial Polymorphic Membrane Protein C

    Get PDF
    Recent advances in the development of chlamydia vaccines, using live-attenuated or ultraviolet light-inactivated chlamydia, are paving the way for new possibilities to oppose the societal challenges posed by chlamydia-related diseases, such as blinding trachoma. An effective subunit vaccine would mitigate the risks associated with the use of a whole-cell vaccine. Our rationale for the design of an efficient subunit vaccine against Chlamydia trachomatis (Ct) is based on the membrane proteins involved in the initial Ct-host cell contact and on the route of immunization that mimics the natural infection process (i.e., via the ocular mucosa). The first aim of our study was to characterize the specific conjunctival and vaginal immune responses following eye drop immunization in BALB/c mice, using the N-terminal portion of the Ct serovar E polymorphic membrane protein C (N-PmpC) as the subunit vaccine antigen. Second, we aimed to examine the adjuvant properties of the probiotic Lactobacillus rhamnosus (LB) when formulated with N-PmpC. N-PmpC applied alone stimulated the production of N-PmpC-and Ct serovar B-specific antibodies in serum, tears and vaginal washes, whereas the combination with LB significantly enhanced these responses. The N-PmpC/LB combination initiated a T cell response characterized by an elevated percentage of CD25+ T cells and CD8+ effector T cells, enhanced CD4+ T-helper 1 skewing, and increased regulatory T cell responses. Together, these results show that eye drop vaccination with combined use of N-PmpC and a live probiotic LB stimulates specific cellular and humoral immune responses, not only locally in the conjunctiva but also in the vaginal mucosa, which could be a promising approach in Ct vaccine development

    Influenza Virus Infection of the Murine Uterus: A New Model for Antiviral Immunity in the Female Reproductive Tract

    Full text link
    Secretory IgA (S-IgA) mediates local immunity to influenza virus in the murine upper respiratory tract and may play an important role in local immunity to various microorganisms in the female reproductive tract as well. Although the presence of IgA in cervicovaginal or uterine secretions has been correlated with immunity to a number of pathogens, there has been no direct demonstration of the mediation of uterine antiviral immunity by S-IgA. Influenza virus, although not a normal pathogen of the reproductive tract, was used to develop a model for the investigation of mucosal immunity in the uterus. PR8 (H1N1) influenza virus injected into the ovarian bursa of BALB/c mice grew well, with peak titers between days 3 and 5. Intravenous injection of polymeric IgA anti-influenza virus monoclonal antibody before or 30 min after viral challenge protected mice against viral infection. We believe this work to be the first direct demonstration of S-IgA-mediated antiviral uterine immunity. It provides a model for further investigation of immunity in the female reproductive tract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63226/1/vim.2006.19.613.pd

    The role of sexually transmitted infections in male circumcision effectiveness against HIV – insights from clinical trial simulation

    Get PDF
    BACKGROUND: A landmark randomised trial of male circumcision (MC) in Orange Farm, South Africa recently showed a large and significant reduction in risk of HIV infection, reporting MC effectiveness of 61% (95% CI: 34%–77%). Additionally, two further randomised trials of MC in Kisumu, Kenya and Rakai, Uganda were recently stopped early to report 53% and 48% effectiveness, respectively. Since MC may protect against both HIV and certain sexually transmitted infections (STI), which are themselves cofactors of HIV infection, an important question is the extent to which this estimated effectiveness against HIV is mediated by the protective effect of circumcision against STI. The answer lies in the trial data if the appropriate statistical analyses can be identified to estimate the separate efficacies against HIV and STI, which combine to determine overall effectiveness. OBJECTIVES AND METHODS: Focusing on the MC trial in Kisumu, we used a stochastic prevention trial simulator (1) to determine whether statistical analyses can validly estimate efficacy, (2) to determine whether MC efficacy against STI alone can produce large effectiveness against HIV and (3) to estimate the fraction of all HIV infections prevented that are attributable to efficacy against STI when both efficacies combine. RESULTS: Valid estimation of separate efficacies against HIV and STI as well as MC effectiveness is feasible with available STI and HIV trial data, under Kisumu trial conditions. Under our parameter assumptions, high overall effectiveness of MC against HIV was observed only with a high MC efficacy against HIV and was not possible on the basis of MC efficacy against STI alone. The fraction of all HIV infections prevented which were attributable to MC efficacy against STI was small, except when efficacy of MC specifically against HIV was very low. In the three MC trials which reported between 48% and 61% effectiveness (combining STI and HIV efficacies), the fraction of HIV infections prevented in circumcised males which were attributable to STI was unlikely to be more than 10% to 20%. CONCLUSION: Estimation of efficacy, attributable fraction and effectiveness leads to improved understanding of trial results, gives trial results greater external validity and is essential to determine the broader public health impact of circumcision to men and women

    Assessment of transmission in trachoma programs over time suggests no short-term loss of immunity.

    Get PDF
    Trachoma programs have dramatically reduced the prevalence of the ocular chlamydia that cause the disease. Some have hypothesized that immunity to the infection may be reduced because of program success in reducing the incidence of infection, and transmission may then increase. Longitudinal studies of multiple communities would be necessary to test this hypothesis. Here, we quantify transmission using an estimated basic reproduction number based on 32 communities during the first, second, and third years of an antibiotic treatment program. We found that there is little to no increase in the basic reproduction number over time. The estimated linear trend in the basic reproduction number, [Formula: see text], was found to be -0.025 per year, 95% CI -0.167 to 0.117 per year. We are unable to find evidence supporting any loss of immunity over the course of a 3-year program. This is encouraging, as it allows the possibility that repeated mass antibiotic distributions may eliminate infection from even the most severely affected areas

    A rationale for continuing mass antibiotic distributions for trachoma

    Get PDF
    BACKGROUND: The World Health Organization recommends periodic mass antibiotic distributions to reduce the ocular strains of chlamydia that cause trachoma, the world's leading cause of infectious blindness. Their stated goal is to control infection, not to completely eliminate it. A single mass distribution can dramatically reduce the prevalence of infection. However, if infection is not eliminated in every individual in the community, it may gradually return back into the community, so often repeated treatments are necessary. Since public health groups are reluctant to distribute antibiotics indefinitely, we are still in need of a proven long-term rationale. Here we use mathematical models to demonstrate that repeated antibiotic distributions can eliminate infection in a reasonable time period. METHODS: We fit parameters of a stochastic epidemiological transmission model to data collected before and 6 months after a mass antibiotic distribution in a region of Ethiopia that is one of the most severely affected areas in the world. We validate the model by comparing our predicted results to Ethiopian data which was collected biannually for two years past the initial mass antibiotic distribution. We use the model to simulate the effect of different treatment programs in terms of local elimination of infection. RESULTS: Simulations show that the average prevalence of infection across all villages progressively decreases after each treatment, as long as the frequency and coverage of antibiotics are high enough. Infection can be eliminated in more villages with each round of treatment. However, in the communities where infection is not eliminated, it returns to the same average level, forming the same stationary distribution. This phenomenon is also seen in subsequent epidemiological data from Ethiopia. Simulations suggest that a biannual treatment plan implemented for 5 years will lead to elimination in 95% of all villages. CONCLUSION: Local elimination from a community is theoretically possible, even in the most severely infected communities. However, elimination from larger areas may require repeated biannual treatments and prevention of re-introduction from outside to treated areas

    Comparability of Results from Pair and Classical Model Formulations for Different Sexually Transmitted Infections

    Get PDF
    The “classical model” for sexually transmitted infections treats partnerships as instantaneous events summarized by partner change rates, while individual-based and pair models explicitly account for time within partnerships and gaps between partnerships. We compared predictions from the classical and pair models over a range of partnership and gap combinations. While the former predicted similar or marginally higher prevalence at the shortest partnership lengths, the latter predicted self-sustaining transmission for gonorrhoea (GC) and Chlamydia (CT) over much broader partnership and gap combinations. Predictions on the critical level of condom use (Cc) required to prevent transmission also differed substantially when using the same parameters. When calibrated to give the same disease prevalence as the pair model by adjusting the infectious duration for GC and CT, and by adjusting transmission probabilities for HIV, the classical model then predicted much higher Cc values for GC and CT, while Cc predictions for HIV were fairly close. In conclusion, the two approaches give different predictions over potentially important combinations of partnership and gap lengths. Assuming that it is more correct to explicitly model partnerships and gaps, then pair or individual-based models may be needed for GC and CT since model calibration does not resolve the differences
    corecore