314 research outputs found

    A simple method for finite range decomposition of quadratic forms and Gaussian fields

    Full text link
    We present a simple method to decompose the Green forms corresponding to a large class of interesting symmetric Dirichlet forms into integrals over symmetric positive semi-definite and finite range (properly supported) forms that are smoother than the original Green form. This result gives rise to multiscale decompositions of the associated Gaussian free fields into sums of independent smoother Gaussian fields with spatially localized correlations. Our method makes use of the finite propagation speed of the wave equation and Chebyshev polynomials. It improves several existing results and also gives simpler proofs.Comment: minor correction for t<

    Abstract polymer models with general pair interactions

    Full text link
    A convergence criterion of cluster expansion is presented in the case of an abstract polymer system with general pair interactions (i.e. not necessarily hard core or repulsive). As a concrete example, the low temperature disordered phase of the BEG model with infinite range interactions, decaying polynomially as 1/rd+λ1/r^{d+\lambda} with λ>0\lambda>0, is studied.Comment: 19 pages. Corrected statement for the stability condition (2.3) and modified section 3.1 of the proof of theorem 1 consistently with (2.3). Added a reference and modified a sentence at the end of sec. 2.

    Abstract cluster expansion with applications to statistical mechanical systems

    Get PDF
    We formulate a general setting for the cluster expansion method and we discuss sufficient criteria for its convergence. We apply the results to systems of classical and quantum particles with stable interactions

    On the convergence of cluster expansions for polymer gases

    Full text link
    We compare the different convergence criteria available for cluster expansions of polymer gases subjected to hard-core exclusions, with emphasis on polymers defined as finite subsets of a countable set (e.g. contour expansions and more generally high- and low-temperature expansions). In order of increasing strength, these criteria are: (i) Dobrushin criterion, obtained by a simple inductive argument; (ii) Gruber-Kunz criterion obtained through the use of Kirkwood-Salzburg equations, and (iii) a criterion obtained by two of us via a direct combinatorial handling of the terms of the expansion. We show that for subset polymers our sharper criterion can be proven both by a suitable adaptation of Dobrushin inductive argument and by an alternative --in fact, more elementary-- handling of the Kirkwood-Salzburg equations. In addition we show that for general abstract polymers this alternative treatment leads to the same convergence region as the inductive Dobrushin argument and, furthermore, to a systematic way to improve bounds on correlations

    Rooted Spiral Trees on Hyper-cubical lattices

    Full text link
    We study rooted spiral trees in 2,3 and 4 dimensions on a hyper cubical lattice using exact enumeration and Monte-Carlo techniques. On the square lattice, we also obtain exact lower bound of 1.93565 on the growth constant λ\lambda. Series expansions give θ=1.3667±0.001\theta=-1.3667\pm 0.001 and ν=1.3148±0.001\nu = 1.3148\pm0.001 on a square lattice. With Monte-Carlo simulations we get the estimates as θ=1.364±0.01\theta=-1.364\pm0.01, and ν=1.312±0.01\nu = 1.312\pm0.01. These results are numerical evidence against earlier proposed dimensional reduction by four in this problem. In dimensions higher than two, the spiral constraint can be implemented in two ways. In either case, our series expansion results do not support the proposed dimensional reduction.Comment: replaced with published versio

    Hard squares with negative activity

    Get PDF
    We show that the hard-square lattice gas with activity z= -1 has a number of remarkable properties. We conjecture that all the eigenvalues of the transfer matrix are roots of unity. They fall into groups (``strings'') evenly spaced around the unit circle, which have interesting number-theoretic properties. For example, the partition function on an M by N lattice with periodic boundary condition is identically 1 when M and N are coprime. We provide evidence for these conjectures from analytical and numerical arguments.Comment: 8 page

    The scaling limit of the energy correlations in non integrable Ising models

    Get PDF
    We obtain an explicit expression for the multipoint energy correlations of a non solvable two-dimensional Ising models with nearest neighbor ferromagnetic interactions plus a weak finite range interaction of strength λ\lambda, in a scaling limit in which we send the lattice spacing to zero and the temperature to the critical one. Our analysis is based on an exact mapping of the model into an interacting lattice fermionic theory, which generalizes the one originally used by Schultz, Mattis and Lieb for the nearest neighbor Ising model. The interacting model is then analyzed by a multiscale method first proposed by Pinson and Spencer. If the lattice spacing is finite, then the correlations cannot be computed in closed form: rather, they are expressed in terms of infinite, convergent, power series in λ\lambda. In the scaling limit, these infinite expansions radically simplify and reduce to the limiting energy correlations of the integrable Ising model, up to a finite renormalization of the parameters. Explicit bounds on the speed of convergence to the scaling limit are derived.Comment: 75 pages, 11 figure

    QED in strong, finite-flux magnetic fields

    Full text link
    Lower bounds are placed on the fermionic determinants of Euclidean quantum electrodynamics in two and four dimensions in the presence of a smooth, finite-flux, static, unidirectional magnetic field B(r)=(0,0,B(r))B(r) =(0,0,B(r)), where B(r)0B(r) \geq 0 or B(r)0B(r) \leq 0, and rr is a point in the xy-plane.Comment: 10 pages, postscript (in uuencoded compressed tar file

    Smooth Paths on Three Dimensional Lattice

    Get PDF
    A particular class of random walks with a spin factor on a three dimensional cubic lattice is studied. This three dimensional random walk model is a simple generalization of random walk for the two dimensional Ising model. All critical diffusion constants and associated critical exponents are calculated. Continuum field theories such as Klein-Gordon, Dirac and massive Chern-Simons theories are constructed near several critical points.Comment: 7 pages,NUP-A-94-

    On the Convergence to the Continuum of Finite Range Lattice Covariances

    Full text link
    In J. Stat. Phys. 115, 415-449 (2004) Brydges, Guadagni and Mitter proved the existence of multiscale expansions of a class of lattice Green's functions as sums of positive definite finite range functions (called fluctuation covariances). The lattice Green's functions in the class considered are integral kernels of inverses of second order positive self adjoint operators with constant coefficients and fractional powers thereof. The fluctuation coefficients satisfy uniform bounds and the sequence converges in appropriate norms to a smooth, positive definite, finite range continuum function. In this note we prove that the convergence is actually exponentially fast.Comment: 14 pages. We have added further references as well as a proof of Corollary 2.2. This version submitted for publicatio
    corecore