5,921 research outputs found
Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages
A language over an alphabet is suffix-convex if, for any words
, whenever and are in , then so is .
Suffix-convex languages include three special cases: left-ideal, suffix-closed,
and suffix-free languages. We examine complexity properties of these three
special classes of suffix-convex regular languages. In particular, we study the
quotient/state complexity of boolean operations, product (concatenation), star,
and reversal on these languages, as well as the size of their syntactic
semigroups, and the quotient complexity of their atoms.Comment: 20 pages, 11 figures, 1 table. arXiv admin note: text overlap with
arXiv:1605.0669
Most Complex Regular Right-Ideal Languages
A right ideal is a language L over an alphabet A that satisfies L = LA*. We
show that there exists a stream (sequence) (R_n : n \ge 3) of regular right
ideal languages, where R_n has n left quotients and is most complex under the
following measures of complexity: the state complexities of the left quotients,
the number of atoms (intersections of complemented and uncomplemented left
quotients), the state complexities of the atoms, the size of the syntactic
semigroup, the state complexities of the operations of reversal, star, and
product, and the state complexities of all binary boolean operations. In that
sense, this stream of right ideals is a universal witness.Comment: 19 pages, 4 figures, 1 tabl
Large Aperiodic Semigroups
The syntactic complexity of a regular language is the size of its syntactic
semigroup. This semigroup is isomorphic to the transition semigroup of the
minimal deterministic finite automaton accepting the language, that is, to the
semigroup generated by transformations induced by non-empty words on the set of
states of the automaton. In this paper we search for the largest syntactic
semigroup of a star-free language having left quotients; equivalently, we
look for the largest transition semigroup of an aperiodic finite automaton with
states.
We introduce two new aperiodic transition semigroups. The first is generated
by transformations that change only one state; we call such transformations and
resulting semigroups unitary. In particular, we study complete unitary
semigroups which have a special structure, and we show that each maximal
unitary semigroup is complete. For there exists a complete unitary
semigroup that is larger than any aperiodic semigroup known to date.
We then present even larger aperiodic semigroups, generated by
transformations that map a non-empty subset of states to a single state; we
call such transformations and semigroups semiconstant. In particular, we
examine semiconstant tree semigroups which have a structure based on full
binary trees. The semiconstant tree semigroups are at present the best
candidates for largest aperiodic semigroups.
We also prove that is an upper bound on the state complexity of
reversal of star-free languages, and resolve an open problem about a special
case of state complexity of concatenation of star-free languages.Comment: 22 pages, 1 figure, 2 table
A New Technique for Reachability of States in Concatenation Automata
We present a new technique for demonstrating the reachability of states in
deterministic finite automata representing the concatenation of two languages.
Such demonstrations are a necessary step in establishing the state complexity
of the concatenation of two languages, and thus in establishing the state
complexity of concatenation as an operation. Typically, ad-hoc induction
arguments are used to show particular states are reachable in concatenation
automata. We prove some results that seem to capture the essence of many of
these induction arguments. Using these results, reachability proofs in
concatenation automata can often be done more simply and without using
induction directly.Comment: 23 pages, 1 table. Added missing affiliation/funding informatio
Exchange Rate Variability and Foreign Direct Investment - Consequences of EMU Enlargement
The aim of the paper is to analyze theoretically and empirically the likely impact of the reduction in exchange rate uncertainty, due to the EMU accession, on the intensity of FDI inflow into candidate countries. Theoretical models give an ambiguous picture of how exchange rate uncertainty and volatility affect direction and magnitude of FDI inflows. The main contribution of this paper is in finding that exchange rate uncertainty and volatility may negatively influence the decision to locate investment in transition and accession countries. Nominal exchange rate uncertainty seems to particularly hamper FDI inflows in accession countries. The key finding of this paper is that euro adoption is likely to exert a positive influence on FDI inflows in accession countries.foreign direct investment, exchange rate uncertainty and volatility, transition, euro adoption
Quotient Complexities of Atoms of Regular Languages
An atom of a regular language L with n (left) quotients is a non-empty
intersection of uncomplemented or complemented quotients of L, where each of
the n quotients appears in a term of the intersection. The quotient complexity
of L, which is the same as the state complexity of L, is the number of
quotients of L. We prove that, for any language L with quotient complexity n,
the quotient complexity of any atom of L with r complemented quotients has an
upper bound of 2^n-1 if r=0 or r=n, and 1+\sum_{k=1}^{r} \sum_{h=k+1}^{k+n-r}
C_{h}^{n} \cdot C_{k}^{h} otherwise, where C_j^i is the binomial coefficient.
For each n\ge 1, we exhibit a language whose atoms meet these bounds.Comment: 17 pages, 2 figures, 9 table
Universal Witnesses for State Complexity of Basic Operations Combined with Reversal
We study the state complexity of boolean operations, concatenation and star
with one or two of the argument languages reversed. We derive tight upper
bounds for the symmetric differences and differences of such languages. We
prove that the previously discovered bounds for union, intersection,
concatenation and star of such languages can all be met by the recently
introduced universal witnesses and their variants.Comment: 18 pages, 8 figures. LNCS forma
Unrestricted State Complexity of Binary Operations on Regular and Ideal Languages
We study the state complexity of binary operations on regular languages over
different alphabets. It is known that if and are languages of
state complexities and , respectively, and restricted to the same
alphabet, the state complexity of any binary boolean operation on and
is , and that of product (concatenation) is . In
contrast to this, we show that if and are over different
alphabets, the state complexity of union and symmetric difference is
, that of difference is , that of intersection is , and
that of product is . We also study unrestricted complexity of
binary operations in the classes of regular right, left, and two-sided ideals,
and derive tight upper bounds. The bounds for product of the unrestricted cases
(with the bounds for the restricted cases in parentheses) are as follows: right
ideals (); left ideals ();
two-sided ideals (). The state complexities of boolean operations
on all three types of ideals are the same as those of arbitrary regular
languages, whereas that is not the case if the alphabets of the arguments are
the same. Finally, we update the known results about most complex regular,
right-ideal, left-ideal, and two-sided-ideal languages to include the
unrestricted cases.Comment: 30 pages, 15 figures. This paper is a revised and expanded version of
the DCFS 2016 conference paper, also posted previously as arXiv:1602.01387v3.
The expanded version has appeared in J. Autom. Lang. Comb. 22 (1-3), 29-59,
2017, the issue of selected papers from DCFS 2016. This version corrects the
proof of distinguishability of states in the difference operation on p. 12 in
arXiv:1609.04439v
- …
