534 research outputs found

    Education in mine waste engineering: the experience of "SIGEO" Master's Course

    Get PDF
    On 19th July 1985 the failure of two tailings dams at the service of a fluorite mine in the Stava Valley (Italy) caused the death of 268 people and severe environmental and socioeconomic damage. Similar accidents have happened in Sgorigrad (Bulgaria, 1966), Aberfan (U.K., 1966), Buffalo Creek (USA, 1972), Aznalcollar (Spain, 1998), Taoshi (China, 2008) and many other places worldwide. The European Union has recognized the seriousness of the problems concerning the management and disposal of mining waste (over 400 million tonnes per year worldwide). With the 2006/21/CE Directive, the EU has urged all member States to carry out censuses, monitoring and consolidation of existing structures under the supervision of qualified experts. These experts should be provided with interdisciplinary knowledge that is difficult to attain during normal degree courses. For this reason, the Trento and Modena-Reggio Emilia Universities and the Turin Polytechnic have set up a post-graduate Master’s Course in “Analysis and Management of Geotechnical Structures”. The article describes the interdisciplinary approach adopted in the course and aims to stimulate the sharing of this initiative among other European Universities

    Vehicle sideslip angle estimation using Kalman filters: modelling and validation

    Get PDF
    The knowledge of the vehicle sideslip angle provides useful information about the state of the vehicle and it is often considered to increase the performance of the car as well as to develop safety systems, especially in the vehicle equipped with Torque Vectoring control systems. This paper describes two methods, based on the use of Kalman filters, to estimate the vehicle sideslip angle and the tire forces of a vehicle starting from the longitudinal and yaw velocity data. In particular, these data refer to on-track testing of a Range Rover Evoque performing ramp steer maneuvers at constant speed. The results of the sideslip estimation method are compared with the actual vehicle sideslip measured by a Datron sensor and are also used to estimate the tire lateral forces

    Cyclic dinucleotides bind the C-linker of HCN4 to control channel cAMP responsiveness

    Get PDF
    cAMP mediates autonomic regulation of heart rate by means of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which underlie the pacemaker current If. cAMP binding to the C-terminal cyclic nucleotide binding domain enhances HCN open probability through a conformational change that reaches the pore via the C-linker. Using structural and functional analysis, we identified a binding pocket in the C-linker of HCN4. Cyclic dinucleotides, an emerging class of second messengers in mammals, bind the C-linker pocket (CLP) and antagonize cAMP regulation of the channel. Accordingly, cyclic dinucleotides prevent cAMP regulation of If in sinoatrial node myocytes, reducing heart rate by 30%. Occupancy of the CLP hence constitutes an efficient mechanism to hinder β-adrenergic stimulation on If. Our results highlight the regulative role of the C-linker and identify a potential drug target in HCN4. Furthermore, these data extend the signaling scope of cyclic dinucleotides in mammals beyond their first reported role in innate immune system

    Frequency analysis of random fatigue: setup for an experimental study

    Get PDF
    The frequency-domain approach to fatigue life estimation in random loading has been largely investigated due to its computational advantages, and several methods for the frequency translation of the most common time-domain methods have been proposed. Between the most known frequency methods there are the Bendat's Method, valid for narrow-band signals, and the Dirlik's formula, which is considered the best result for wide-band signals. However, the great part of the frequency methods takes the rainflow count as a reference time-domain method and uses the rainflow damage computation as the exact value to emulate. Therefore, very few experimental data for fatigue life of mechanical components subject to random loads are available in the literature. This work presents the setup for a series of experimental tests for specimens subjected to random loads, aiming at achieving experimental data to compare with the results provided by frequency methods. After a brief description of the materials used for the setup, the two-step test concept is described: firstly, the specimen will be subjected to random loads obtained by a certain PSD for an amount of time which should nominally cause a 30% of damage; then, the fatigue test will be ended on a resonance testing machine to compute the actual residual fatigue life of the specimen; this two-step testing also allows to reduce the time requested for the tests. The test bench developed for the experimental investigation is described in the paper, together with the results of some preliminary tests, aimed at verifying the feasibility of the conceived procedure

    Rapid and accurate fatigue assessment by an efficient critical plane algorithm: application to a FSAE car rear upright

    Get PDF
    The topic of material fatigue is widely discussed and researched in both scientific and industrial communities. Fatigue damage remains a significant issue for both metallic and non-metallic components, leading to unforeseen failures of in-service parts. Critical plane methods are particularly recommended in case of multiaxial fatigue assessment and have gained relevance as they allow for the identification of the component's critical location and early crack propagation. However, the standard method for calculating critical plane factors is time-consuming, utilizing nested for/end loops and, for that, is mainly applied in a research context, or when critical regions are already known. In many cases, the critical area of a component cannot be identified due to complex geometries and loads or time constraints. This becomes particularly relevant after topological optimization of components and, more generally, in lightweight design. An efficient algorithm for critical plane factors evaluation have been recently proposed by the authors. The algorithm applies to all critical plane factors that require the maximization of a specific parameter based on stress and strain components or a combination of them. The methodology is based on tensor invariants and coordinates transformation law. This paper presents and validate the proposed methodology through an automotive case study: the new algorithm was tested on a rear upright of a FSAE car, having complex geometry, subjected to non-proportional loading conditions. The efficient algorithm showed a significant reduction in computation time compared to the (blind search-for) standard plane scanning method, without any loss in solution accuracy

    Numerical-experimental characterization of the dynamic behavior of PCB for the fatigue analysis of PCBa

    Get PDF
    In today's highly digitized and mechatronics-based world, the need for reliable and cost-effective electronic components has become essential. The reliability of these components is not only based on their electrical and circuit aspects but also on their structural properties. This paper presents a study carried out on two-layer Printed Circuit Boards (PCBs) of rectangular shape, which are representative of many industrial applications. The aim of this study is to compare different numerical models, developed in Ansys Workbench and in a FEM software specifically designed for circuit boards, with experimental tests to determine the most interesting ones for further studies on Printed Circuit Board Assemblies (PCBAs). The comparison includes both static and dynamic behaviors, tested through isostatic bending tests and dynamic analyses with a shaker and a fiber optic laser. The models developed are capable of reproducing statics and dynamics of PCBs with varying degrees of accuracy and numerical complexity. However, increasing the details of the models does not always correspond to an increase in accuracy in reproducing the dynamic behavior. Prior to the experimental dynamic analysis, the influence of constraints’ modeling strategies and damping on the first eigenmode was studied, and the results were used to set up tests and simulations to achieve more consistent results. Future work will extend the dynamic characterization to PCBAs by populating the studied PCBs with components, and continue with the study of predictive models for their structural reliability

    Electric Bike Product Conception and Styling According to Design Trends

    Get PDF
    The following case study portrays the several steps required to conceive a product from scratch. The first step involves an in-depth analysis of today’s electric bicycle market in order to obtain data and information relating to the levels of innovation and comfort required by customers. Then, we evaluate the implementation of a useful method to understand the level of innovation that the product must have to be competitive on the market. The second part studies the architecture of the product, considering the different components already sold on the market which will become part of the project. The third part concerns a comparison between different stylistic trends that the vehicle may have (in order to outline the best one). The fourth part concerns the CAD realization of the virtual model complete with all its parts, including a structural verification study of the frame. The last part studies the presentation of the product to the customer, exploring different effective ways to communicate what the strengths of the new product will be (also allowing them to customize it before its realization). The plan for the realization of the new product, starting from the concept to arrive at the final presentation to the customer, follows the methods proposed by applying a series of steps to develop a generic new product in an efficient, sensible, and methodical manner. Therefore, we will refer to quality function deployment (QFD), benchmarking (BM), design for X, until reaching the final prototyping and testing phases

    On the use of shape memory alloys for deployable passive heat radiators in space satellites

    Get PDF
    The present work presents a multifunctional structure for space engineering application part of the TOPDESS project, funded by ESA. The main aim of the project is the design of a thermal control device able to deploy through passive actuation. A combined device has been designed, made up of a Pulsating Heat Pipe (PHP) foldable heat exchanger and Shape Memory Alloy (SMA) wire. The deployment of the SMA wire is conceived to be controlled by thermal contact with the heat source and by conduction along the wire. Since the heat sources are lumped and the wire is subject to convection, a temperature gradient develops along the wire. A monodimensional mode able to predict the behavior of an SMA wire subjected to a spatial temperature gradient, is presented in this paper. The results show that the system can carry out folding and unfolding cycles with rotation angles greater than 80° only if the wire is subjected to uniform temperature distribution; in the case of temperature gradient, the achievable rotation angle is about 20°. The analysis states the feasibility of the actuation system, highlighting the critical technological aspects, to lay the groundwork for the future development of the whole system
    corecore