1,730 research outputs found

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlogn)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(logn)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlogn)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi

    Microwave Gaseous Discharges

    Get PDF
    Contains reports on three research projects

    Microwave Gaseous Discharges

    Get PDF
    Contains reports on two research projects

    Microwave Gaseous Discharges

    Get PDF
    Contains reports on three research projects.United States Atomic Energy Commission (Contract AT (30-1) 1842

    Finding 2-Edge and 2-Vertex Strongly Connected Components in Quadratic Time

    Full text link
    We present faster algorithms for computing the 2-edge and 2-vertex strongly connected components of a directed graph, which are straightforward generalizations of strongly connected components. While in undirected graphs the 2-edge and 2-vertex connected components can be found in linear time, in directed graphs only rather simple O(mn)O(m n)-time algorithms were known. We use a hierarchical sparsification technique to obtain algorithms that run in time O(n2)O(n^2). For 2-edge strongly connected components our algorithm gives the first running time improvement in 20 years. Additionally we present an O(m2/logn)O(m^2 / \log{n})-time algorithm for 2-edge strongly connected components, and thus improve over the O(mn)O(m n) running time also when m=O(n)m = O(n). Our approach extends to k-edge and k-vertex strongly connected components for any constant k with a running time of O(n2log2n)O(n^2 \log^2 n) for edges and O(n3)O(n^3) for vertices

    Resolution of null fiber and conormal bundles on the Lagrangian Grassmannian

    Full text link
    We study the null fiber of a moment map related to dual pairs. We construct an equivariant resolution of singularities of the null fiber, and get conormal bundles of closed KC K_C -orbits in the Lagrangian Grassmannian as the categorical quotient. The conormal bundles thus obtained turn out to be a resolution of singularities of the closure of nilpotent KC K_C -orbits, which is a "quotient" of the resolution of the null fiber.Comment: 17 pages; completely revised and add reference

    Microwave Gaseous Discharges

    Get PDF
    Contains reports on five research projects.United States Atomic Energy Commission (Contract AT(30-1) 1842

    Microwave Gaseous Discharges

    Get PDF
    Contains research objectives and reports on five research projects

    Schur Q-functions and degeneracy locus formulas for morphisms with symmetries

    Full text link
    We give closed-form formulas for the fundamental classes of degeneracy loci associated with vector bundle maps given locally by (not necessary square) matrices which are symmetric (resp. skew-symmetric) w.r.t. the main diagonal. Our description uses essentially Schur Q-polynomials of a bundle, and is based on a certain push-forward formula for these polynomials in a Grassmann bundle.Comment: 22 pages, AMSTEX, misprints corrected, exposition improved. to appear in the Proceedings of Intersection Theory Conference in Bologna, "Progress in Mathematics", Birkhause
    corecore