628 research outputs found

    Reproducibility of quantitative F-18-3'-deoxy-3'-fluorothymidine measurements using positron emission tomography

    Get PDF
    Positron emission tomography (PET) using F-18-3'-deoxy-3'-fluorothymidine ([F-18]FLT) allows noninvasive monitoring of tumour proliferation. For serial imaging in individual patients, good reproducibility is essential. The purpose of the present study was to evaluate the reproducibility of quantitative [F-18]FLT measurements. Nine patients with non-small-cell lung cancer (NSCLC) and six with head-and-neck cancer (HNC) underwent [F-18]FLT PET twice within 7 days prior to therapy. The maximum pixel value (SUVmax) and a threshold defined volume (SUV41%) were defined for all delineated lesions. The plasma to tumour transfer constant (K-i) was estimated using both Patlak graphical analysis and nonlinear regression (NLR). NLR was also used to estimate k(3), which, at least in theory, selectively reflects thymidine kinase 1 activity. The level of agreement between test and retest values was assessed using the intraclass correlation coefficient (ICC) and Bland-Altman analysis. All primary tumours and > 90% of clinically suspected locoregional metastases could be delineated. In total, 24 lesions were defined. NLR-derived K-i, Patlak-derived K-i, SUV41% and SUVmax showed excellent reproducibility with ICCs of 0.92, 0.95, 0.98 and 0.93, and SDs of 16%, 12%, 7% and 11%, respectively. Reproducibility was poor for k(3) with an ICC of 0.43 and SD of 38%. Quantitative [F-18]FLT measurements are reproducible in both NSCLC and HNC patients. When monitoring response in individual patients, changes of more than 15% in SUV41%, 20-25% in SUVmax and Patlak-derived K-i, and 32% in NLR3k-derived K-i are likely to represent treatment effect

    Biotic and abiotic retention, recycling and remineralization of metals in the ocean

    Get PDF
    Trace metals shape both the biogeochemical functioning and biological structure of oceanic provinces. Trace metal biogeochemistry has primarily focused on modes of external supply of metals from aeolian, hydrothermal, sedimentary and other sources. However, metals also undergo internal transformations such as abiotic and biotic retention, recycling and remineralization. The role of these internal transformations in metal biogeochemical cycling is now coming into focus. First, the retention of metals by biota in the surface ocean for days, weeks or months depends on taxon-specific metal requirements of phytoplankton, and on their ultimate fate: that is, viral lysis, senescence, grazing and/or export to depth. Rapid recycling of metals in the surface ocean can extend seasonal productivity by maintaining higher levels of metal bioavailability compared to the influence of external metal input alone. As metal-containing organic particles are exported from the surface ocean, different metals exhibit distinct patterns of remineralization with depth. These patterns are mediated by a wide range of physicochemical and microbial processes such as the ability of particles to sorb metals, and are influenced by the mineral and organic characteristics of sinking particles. We conclude that internal metal transformations play an essential role in controlling metal bioavailability, phytoplankton distributions and the subsurface resupply of metals

    Dental calculus evidence of Taï Forest Chimpanzee plant consumption and life history transitions

    Get PDF
    Dental calculus (calcified dental plaque) is a source of multiple types of data on life history. Recent research has targeted the plant microremains preserved in this mineralised deposit as a source of dietary and health information for recent and past populations. However, it is unclear to what extent we can interpret behaviour from microremains. Few studies to date have directly compared the microremain record from dental calculus to dietary records, and none with long-term observation dietary records, thus limiting how we can interpret diet, food acquisition and behaviour. Here we present a high-resolution analysis of calculus microremains from wild chimpanzees (Pan troglodytes verus) of Taï National Park, Côte d"Ivoire. We test microremain assemblages against more tan two decades of field behavioural observations to establish the ability of calculus to capture the composition of diet. Our results show that some microremain classes accumulate as long-lived dietary markers. Phytolith abundance in calculus can reflect the proportions of plants in the diet, yet this pattern is not true for starches. We also report microremains can record information about other dietary behaviours, such as the age of weaning and learned food processing techniques like nutcracking

    Developing international business relationships in a Russian context

    Get PDF
    The collapse of the former Soviet Union has opened up a wealth of business opportunities for companies seeking new markets in the Russian Federation. Despite this, firms intending to do business in Russia have found themselves hampered by cultural differences in business practices and expectations. As Russia integrates into the global economy, understanding such practices and the managerial mindset of business people is crucial for managers who hope to navigate Russia's complex markets. This study draws on the trust literature and adopts quantitative tools to deconstruct the Russian 'Sviazi' system of social capital business networking. We develop a model isolating three dimensions of Sviazi: one an affective or emotional component; the second, a conative component; and the third, a cognitive component. The model provides a useful guide for helping foreign firms to succeed in Russia, while also serving as a basis for further research in the field. Keywords

    A framework for the first‑person internal sensation of visual perception in mammals and a comparable circuitry for olfactory perception in Drosophila

    Get PDF
    Perception is a first-person internal sensation induced within the nervous system at the time of arrival of sensory stimuli from objects in the environment. Lack of access to the first-person properties has limited viewing perception as an emergent property and it is currently being studied using third-person observed findings from various levels. One feasible approach to understand its mechanism is to build a hypothesis for the specific conditions and required circuit features of the nodal points where the mechanistic operation of perception take place for one type of sensation in one species and to verify it for the presence of comparable circuit properties for perceiving a different sensation in a different species. The present work explains visual perception in mammalian nervous system from a first-person frame of reference and provides explanations for the homogeneity of perception of visual stimuli above flicker fusion frequency, the perception of objects at locations different from their actual position, the smooth pursuit and saccadic eye movements, the perception of object borders, and perception of pressure phosphenes. Using results from temporal resolution studies and the known details of visual cortical circuitry, explanations are provided for (a) the perception of rapidly changing visual stimuli, (b) how the perception of objects occurs in the correct orientation even though, according to the third-person view, activity from the visual stimulus reaches the cortices in an inverted manner and (c) the functional significance of well-conserved columnar organization of the visual cortex. A comparable circuitry detected in a different nervous system in a remote species-the olfactory circuitry of the fruit fly Drosophila melanogaster-provides an opportunity to explore circuit functions using genetic manipulations, which, along with high-resolution microscopic techniques and lipid membrane interaction studies, will be able to verify the structure-function details of the presented mechanism of perception

    Jay Forrester

    Get PDF
    Jay Wright Forrester was an American engineer and management thinker. He founded System Dynamics, an approach based on computer modelling which arguably has done more than any other method to provide a practical and realistic analysis of change processes in systems. System Dynamics (SD) has been taken up across the world, initially by Forrester’s students and colleagues, but increasingly by a much wider community. It has had profound and influential applications in a range of fields, most prominently organisational management, urban planning and environmental policy. Forrester summed up his concerns and his understanding of SD in an ‘elevator pitch’ (a statement short enough to be spoken in an elevator ride) on an email list: System dynamics deals with how things change through time, which includes most of what most people find important. It uses computer simulation to take the knowledge we already have about details in the world around us and to show why our social and physical systems behave the way they do. System dynamics demonstrates how most of our own decision-making policies are the cause of the problems that we usually blame on others, and how to identify policies we can follow to improve our situation. (Forrester JW. System dynamics in the elevator. System-dynamics email list. https://www.ventanasystems.co.uk/forum/viewtopic.php?t=1787#p1964. Accessed 25 Sept 2019, 1997

    Applications of Laboratory Technology in the Evaluation of the Risk of Rabies Transmissions by Biting Dogs and Cats

    Get PDF
    While rabies is not a common disease in domestic animal species of the United States, potential exposures to rabies in the form of bites are very common and increasing. A nationwide study conducted among general hospitals shows that 1 percent of emergency room visits are for animal bites, of which 80-90 percent are inflicted by the dog (Callaham 1980). This figure is conservative, as the study did not include pediatric hospitals, the bite of victims that progress only to a physician\u27s office, or those that receive no medical care at all. In Missouri alone, this study would infer about 1500 dog bites per year reaching only the general hospital. The number of dog and other animal bites across the country is unknown but may safely be assumed to be staggering in magnitude

    Interaction of amyloid and tau on cortical microstructure in cognitively unimpaired adults

    Get PDF
    INTRODUCTION: Neurite orientation dispersion and density imaging (NODDI), a multi-compartment diffusion-weighted imaging (DWI) model, may be useful for detecting early cortical microstructural alterations in Alzheimer's disease prior to cognitive impairment. METHODS: Using neuroimaging (NODDI and T1-weighted magnetic resonance imaging [MRI]) and cerebrospinal fluid (CSF) biomarker data (measured using Elecsys® CSF immunoassays) from 219 cognitively unimpaired participants, we tested the main and interactive effects of CSF amyloid beta (Aβ)42/Aβ40 and phosphorylated tau (p-tau) on cortical NODDI metrics and cortical thickness, controlling for age, sex, and apolipoprotein E ε4. RESULTS: We observed a significant CSF Aβ42/Aβ40 × p-tau interaction on cortical neurite density index (NDI), but not orientation dispersion index or cortical thickness. The directionality of these interactive effects indicated: (1) among individuals with lower CSF p-tau, greater amyloid burden was associated with higher cortical NDI; and (2) individuals with greater amyloid and p-tau burden had lower cortical NDI, consistent with cortical neurodegenerative changes. DISCUSSION: NDI is a particularly sensitive marker for early cortical changes that occur prior to gross atrophy or development of cognitive impairment

    Materials Characterization Using Acoustic Nonlinearity Parameters and Harmonic Generation: Effects of Crystalline and Amorphous Structures

    Get PDF
    The importance of nonlinearity in the description of material behavior is gaining widespread attention. Nonlinearity plays a major, if not dominating, role in a number of material properties. For example, properties that are important in engineering design such as thermal expansion or the pressure dependence of optical refraction are inherently nonlinear [1]. New assembley techniques such as the use of ultrasonic gauges to determine the loading of critical fasteners depend upon nonlinear properties of the fasteners [2]. Areas of considerable fundamental interest in nonlinearity include lattice dynamics [3], radiation stress in solids [4,5], and nonlinear optics [6
    corecore