111 research outputs found
Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage
This manuscript provides an overview of the in vitro and in vivo studies reported in the
literature focusing on seaweed polysaccharides based hydrogels that have been proposed for
applications in regenerative medicine, particularly, in the field of cartilage tissue engineering.
For a better understanding of the main requisites for these specific applications, the main
aspects of the native cartilage structure, as well as recognized diseases that affect this tissue are
briefly described. Current available treatments are also presented to emphasize the need for
alternative techniques. The following part of this review is centered on the description of the
general characteristics of algae polysaccharides, as well as relevant properties required for
designing hydrogels for cartilage tissue engineering purposes. An in-depth overview of the
most well known seaweed polysaccharide, namely agarose, alginate, carrageenan and ulvan
biopolymeric gels, that have been proposed for engineering cartilage is also provided. Finally,
this review describes and summarizes the translational aspect for the clinical application of
alternative systems emphasizing the importance of cryopreservation and the commercial
products currently available for cartilage treatment.Authors report no declarations of interest. Authors thank the Portuguese Foundation for Science and Technology (FCT) for the PhD fellowship of Elena G. Popa (SFRH/BD/64070/2009) and research project (MIT/ECE/0047/2009). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS
A prospective randomised radiostereometric analysis trial of SmartSet HV and Palacos R bone cements in primary total hip arthroplasty
High glycine concentration increases collagen synthesis by articular chondrocytes in vitro: acute glycine deficiency could be an important cause of osteoarthritis
Collagen synthesis is severely diminished in osteoarthritis; thus, enhancing it may help the regeneration of cartilage. This
requires large amounts of glycine, proline and lysine. Previous works of our group have shown that glycine is an essential
amino acid, which must be present in the diet in large amounts to satisfy the demands for collagen synthesis. Other authors
have shown that proline is conditionally essential. In this work we studied the effect of these amino acids on type II collagen
synthesis. Bovine articular chondrocytes were cultured under a wide range of different concentrations of glycine, proline and
lysine. Chondrocytes were characterized by type II collagen immunocytochemistry of confluence monolayer cultures. Cell
growth and viability were assayed by trypan blue dye exclusion method. Type II collagen was measured in the monolayer,
every 48 h for 15 days by ELISA. Increase in concentrations of proline and lysine in the culture medium enhances the synthesis
of type II collagen at low concentrations, but these effects decay before 1.0 mM. Increase of glycine as of 1.0 mM
exceeds these effects and this increase continues more persistently by 60–75%. Since the large effects produced by proline
and lysine are within the physiological range, while the effect of glycine corresponds to a much higher range, these results
demonstrated a severe glycine deficiency for collagen synthesis. Thus, increasing glycine in the diet may well be a strategy
for helping cartilage regeneration by enhancing collagen synthesis, which could contribute to the treatment and prevention
of osteoarthriti
Recommended from our members
Neurotoxic reactive astrocytes are induced by activated microglia
Reactive astrocytes are strongly induced by central nervous system (CNS) injury and disease, but their role is poorly understood. Here we show that a subtype of reactive astrocytes, which we termed A1, is induced by classically activated neuroinflammatory microglia. We show that activated microglia induce A1 astrocytes by secreting Il-1α, TNF and C1q, and that these cytokines together are necessary and sufficient to induce A1 astrocytes. A1 astrocytes lose the ability to promote neuronal survival, outgrowth, synaptogenesis and phagocytosis, and induce the death of neurons and oligodendrocytes. Death of axotomized CNS neurons in vivo is prevented when the formation of A1 astrocytes is blocked. Finally, we show that A1 astrocytes are abundant in various human neurodegenerative diseases including Alzheimer’s, Huntington’s and Parkinson’s disease, amyotrophic lateral sclerosis and multiple sclerosis. Taken together these findings help to explain why CNS neurons die after axotomy, strongly suggest that A1 astrocytes contribute to the death of neurons and oligodendrocytes in neurodegenerative disorders, and provide opportunities for the development of new treatments for these diseases.This work was supported by grants from the National Institutes of Health (R01 AG048814, B.A.B.; RO1 DA15043, B.A.B.; P50 NS38377, V.L.D. and T.M.D.) Christopher and Dana Reeve Foundation (B.A.B.), the Novartis Institute for Biomedical Research (B.A.B.), Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (B.A.B.), the JPB Foundation (B.A.B., T.M.D.), the Cure Alzheimer’s Fund (B.A.B.), the Glenn Foundation (B.A.B.), the Esther B O’Keeffe Charitable Foundation (B.A.B.), the Maryland Stem Cell Research Fund (2013-MSCRFII-0105-00, V.L.D.; 2012-MSCRFII-0268-00, T.M.D.; 2013-MSCRFII-0105-00, T.M.D.; 2014-MSCRFF-0665, M.K.). S.A.L. was supported by a postdoctoral fellowship from the Australian National Health and Medical Research Council (GNT1052961), and the Glenn Foundation Glenn Award. L.E.C. was funded by a Merck Research Laboratories postdoctoral fellowship (administered by the Life Science Research Foundation). W.-S.C. was supported by a career transition grant from NEI (K99EY024690). C.J.B. was supported by a postdoctoral fellowship from Damon Runyon Cancer Research Foundation (DRG-2125-12). L.S. was supported by a postdoctoral fellowship from the German Research Foundation (DFG, SCHI 1330/1-1)
Recommended from our members
Neurotoxic reactive astrocytes are induced by activated microglia
Reactive astrocytes are strongly induced by central nervous system (CNS) injury and disease, but their role is poorly understood. Here we show that a subtype of reactive astrocytes, which we termed A1, is induced by classically activated neuroinflammatory microglia. We show that activated microglia induce A1 astrocytes by secreting Il-1α, TNF and C1q, and that these cytokines together are necessary and sufficient to induce A1 astrocytes. A1 astrocytes lose the ability to promote neuronal survival, outgrowth, synaptogenesis and phagocytosis, and induce the death of neurons and oligodendrocytes. Death of axotomized CNS neurons in vivo is prevented when the formation of A1 astrocytes is blocked. Finally, we show that A1 astrocytes are abundant in various human neurodegenerative diseases including Alzheimer’s, Huntington’s and Parkinson’s disease, amyotrophic lateral sclerosis and multiple sclerosis. Taken together these findings help to explain why CNS neurons die after axotomy, strongly suggest that A1 astrocytes contribute to the death of neurons and oligodendrocytes in neurodegenerative disorders, and provide opportunities for the development of new treatments for these diseases.This work was supported by grants from the National Institutes of Health (R01 AG048814, B.A.B.; RO1 DA15043, B.A.B.; P50 NS38377, V.L.D. and T.M.D.) Christopher and Dana Reeve Foundation (B.A.B.), the Novartis Institute for Biomedical Research (B.A.B.), Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (B.A.B.), the JPB Foundation (B.A.B., T.M.D.), the Cure Alzheimer’s Fund (B.A.B.), the Glenn Foundation (B.A.B.), the Esther B O’Keeffe Charitable Foundation (B.A.B.), the Maryland Stem Cell Research Fund (2013-MSCRFII-0105-00, V.L.D.; 2012-MSCRFII-0268-00, T.M.D.; 2013-MSCRFII-0105-00, T.M.D.; 2014-MSCRFF-0665, M.K.). S.A.L. was supported by a postdoctoral fellowship from the Australian National Health and Medical Research Council (GNT1052961), and the Glenn Foundation Glenn Award. L.E.C. was funded by a Merck Research Laboratories postdoctoral fellowship (administered by the Life Science Research Foundation). W.-S.C. was supported by a career transition grant from NEI (K99EY024690). C.J.B. was supported by a postdoctoral fellowship from Damon Runyon Cancer Research Foundation (DRG-2125-12). L.S. was supported by a postdoctoral fellowship from the German Research Foundation (DFG, SCHI 1330/1-1)
Results of 3,668 primary total hip replacements for primary osteoarthritis in patients under the age of 55 years: A follow-up of a previous report from the Finnish Arthroplasty Register
Cementless total hip arthroplasty for primary osteoarthritis in patients aged 55 years and older: Results of the 8 most common cementless designs compared to cemented reference implants in the Finnish Arthroplasty Register
A cartilage growth mixture model for infinitesimal strains: solutions of boundary-value problems related to in vitro growth experiments
A cartilage growth mixture (CGM) model is linearized for infinitesimal elastic and growth strains. Parametric studies for equilibrium and nonequilibrium boundary-value problems representing the in vitro growth of cylindrical cartilage constructs are solved. The results show that the CGM model is capable of describing the main biomechanical features of cartilage growth. The solutions to the equilibrium problems reveal that tissue composition, constituent pre-stresses, and geometry depend on collagen remodeling activity, growth symmetry, and differential growth. Also, nonhomogeneous growth leads to nonhomogeneous tissue composition and constituent pre-stresses. The solution to the nonequilibrium problem reveals that the tissue is nearly in equilibrium at all time points. The results suggest that the CGM model may be used in the design of tissue engineered cartilage constructs for the repair of cartilage defects; for example, to predict how dynamic mechanical loading affects the development of nonuniform properties during in vitro growth. Furthermore, the results lay the foundation for future analyses with nonlinear models that are needed to develop realistic models of cartilage growth
Transcriptional Analysis of Fracture Healing and the Induction of Embryonic Stem Cell–Related Genes
Fractures are among the most common human traumas. Fracture healing represents a unique temporarily definable post-natal process in which to study the complex interactions of multiple molecular events that regulate endochondral skeletal tissue formation. Because of the regenerative nature of fracture healing, it is hypothesized that large numbers of post-natal stem cells are recruited and contribute to formation of the multiple cell lineages that contribute to this process. Bayesian modeling was used to generate the temporal profiles of the transcriptome during fracture healing. The temporal relationships between ontologies that are associated with various biologic, metabolic, and regulatory pathways were identified and related to developmental processes associated with skeletogenesis, vasculogenesis, and neurogenesis. The complement of all the expressed BMPs, Wnts, FGFs, and their receptors were related to the subsets of transcription factors that were concurrently expressed during fracture healing. We further defined during fracture healing the temporal patterns of expression for 174 of the 193 genes known to be associated with human genetic skeletal disorders. In order to identify the common regulatory features that might be present in stem cells that are recruited during fracture healing to other types of stem cells, we queried the transcriptome of fracture healing against that seen in embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs). Approximately 300 known genes that are preferentially expressed in ESCs and ∼350 of the known genes that are preferentially expressed in MSCs showed induction during fracture healing. Nanog, one of the central epigenetic regulators associated with ESC stem cell maintenance, was shown to be associated in multiple forms or bone repair as well as MSC differentiation. In summary, these data present the first temporal analysis of the transcriptome of an endochondral bone formation process that takes place during fracture healing. They show that neurogenesis as well as vasculogenesis are predominant components of skeletal tissue formation and suggest common pathways are shared between post-natal stem cells and those seen in ESCs
Síndrome do disco adjacente à fusão (Síndrome de Transição) na coluna cervical: resultados segundo critérios clínicos e radiológicos
- …
