41 research outputs found

    Numerical investigation of nanostructured silica PCFs for sensing applications.

    Get PDF
    Photonic crystal fibers (PCFs) developed using nanostructured composite materials provide special optical properties. PCF light propagation and modal characteristics can be tailored by modifying their structural and material parameters. Structuring and infusion of liquid crystal materials enhances the capabilities of all silica PCFs, facilitating their operation in different spectral regimes. The wavelength tunability feature of nanostructured PCFs can be utilized for many advanced sensing applications. This paper discusses a new approach to modify the optical properties of PCFs by periodic nanostructuring and composite material (liquid crystal-silica) infiltration. PCF characteristics like confinement wavelength, confinement loss, mode field diameter (MFD) and bandwidth are investigated by varying the structural parameters and material infiltrations. Theoretical study revealed that composite material infusion resulted in a spectral band shift accompanied by an improvement in PCF bandwidth. Moreover, nanostructured PCFs also achieved reduced confinement losses and improved MFD which is very important in long-distance remote sensing applications

    Errata

    No full text

    Loren Parsons' contribution to addiction neurobiology

    No full text
    Loren (Larry) H. Parsons passed away at the age of 51. In spite of his premature departure, Larry much contributed to the drug abuse field. Since his graduate studies for the Ph.D. in Chemistry in J.B. Justice lab, microdialysis is the tread that links Larry's research topics, namely, the role of dopamine (DA), serotonin (5-HT), gamma-aminobutyric acid (GABA), glutamate and endocannabinoids (eCBs) in drug reinforcement and dependence. Larry was the first to show that abstinence from chronic cocaine reduces extracellular DA in the NAc, consistent with the so called 'dopamine depletion hypothesis' of cocaine addiction. Another Larry's major contributions are the studies on 5-HT and 5-HT receptors' role in cocaine stimulant actions, which resulted in the identification of 5-HT1B receptors as a critical substrate of cocaine reinforcement. By applying mass spectrometry to eCBs analysis in brain dialysates, Larry's lab showed that ethanol, heroin, nicotine and cocaine differentially affect anandamide and 2-arachidonoylglicerol overflow in the NAc shell, a critical site of drugs of abuse DA stimulant actions. Larry also applied microdialysis to study GABA and glutamate's role in ethanol dependence and heroin reinforcement, providing in vivo evidence for a sensitization of corticotropin-releasing factor-dependent release of GABA in the central amygdala in withdrawal from chronic ethanol and for a reduction of GABA transmission in the ventral pallidum in heroin but not cocaine intravenous self-administration. Larry showed the wide possibilities of microdialysis as a general purpose methodology for monitoring neurotransmitters and neuromodulators in the brain extracellular compartment. From this viewpoint, he stands as the best advocate for microdialysis

    Spinal glial TLR4-mediated nociception and production of prostaglandin E2 and TNF

    No full text
    Background and purposeToll-like receptor 4 (TLR4) expressed on spinal microglia and astrocytes has been suggested to play an important role in the regulation of pain signalling. The purpose of the present work was to examine the links between TLR4, glial activation and spinal release of prostaglandin E(2) (PGE(2)) and tumour necrosis factor (TNF), and the role these factors play in TLR4-induced tactile allodynia.Experimental approachToll-like receptor 4 was activated by intrathecal (i.t.) injection of lipopolysaccharide (LPS) and KDO(2)-Lipid A (KDO(2)) to rats. Tactile allodynia was assessed using von Frey filaments and cerebrospinal fluid collected through spinal dialysis and lumbar puncture. PGE(2) and TNF levels were measured by mass spectometry and elisa. Minocycline and pentoxifylline (glia inhibitors), etanercept (TNF-blocker) and ketorolac (COX-inhibitor) were given i.t. prior to injection of the TLR4-agonists, in order to determine if these agents alter TLR4-mediated nociception and the spinal release of PGE(2) and TNF.Key resultsSpinal administration of LPS and KDO(2) produced a dose-dependent tactile allodynia, which was attenuated by pentoxifylline, minocycline and etanercept but not ketorolac. Both TLR4 agonists induced the spinal release of PGE(2) and TNF. Intrathecal pentoxifylline blunted PGE(2) and TNF release, while i.t. minocycline only prevented the spinal release of TNF. The release of PGE(2) induced by LPS and KDO(2) was attenuated by i.t. administration of ketorolac.Conclusions and implicationsActivation of TLR4 induces tactile allodynia, which is probably mediated by TNF released by activated spinal glia

    Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment

    Full text link
    Classical proinflammatory eicosanoids, and more recently discovered lipid mediators with anti-inflammatory and proresolving bioactivity, exert a complex role in the initiation, control, and resolution of inflammation. Using a targeted lipidomics approach, we investigated circulating lipid mediator responses to resistance exercise and treatment with the NSAID ibuprofen. Human subjects undertook a single bout of unaccustomed resistance exercise (80% of one repetition maximum) following oral ingestion of ibuprofen (400 mg) or placebo control. Venous blood was collected during early recovery (0–3 h and 24 h postexercise), and serum lipid mediator composition was analyzed by LC-MS-based targeted lipidomics. Postexercise recovery was characterized by elevated levels of cyclooxygenase (COX)-1 and 2-derived prostanoids (TXB2, PGE2, PGD2, PGF2α, and PGI2), lipooxygenase (5-LOX, 12-LOX, and 15-LOX)-derived hydroxyeicosatetraenoic acids (HETEs), and leukotrienes (e.g., LTB4), and epoxygenase (CYP)-derived epoxy/dihydroxy eicosatrienoic acids (EpETrEs/DiHETrEs). Additionally, we detected elevated levels of bioactive lipid mediators with anti-inflammatory and proresolving properties, including arachidonic acid-derived lipoxins (LXA4 and LXB4), and the EPA (E-series) and DHA (D-series)-derived resolvins (RvD1 and RvE1), and protectins (PD1 isomer 10S, 17S-diHDoHE). Ibuprofen treatment blocked exercise-induced increases in COX-1 and COX-2-derived prostanoids but also resulted in off-target reductions in leukotriene biosynthesis, and a diminished proresolving lipid mediator response. CYP pathway product metabolism was also altered by ibuprofen treatment, as indicated by elevated postexercise serum 5,6-DiHETrE and 8,9-DiHETrE only in those receiving ibuprofen. These findings characterize the blood inflammatory lipid mediator response to unaccustomed resistance exercise in humans and show that acute proinflammatory signals are mechanistically linked to the induction of a biological active inflammatory resolution program, regulated by proresolving lipid mediators during postexercise recovery
    corecore