1,155 research outputs found
Biased landscapes for random Constraint Satisfaction Problems
The typical complexity of Constraint Satisfaction Problems (CSPs) can be
investigated by means of random ensembles of instances. The latter exhibit many
threshold phenomena besides their satisfiability phase transition, in
particular a clustering or dynamic phase transition (related to the tree
reconstruction problem) at which their typical solutions shatter into
disconnected components. In this paper we study the evolution of this
phenomenon under a bias that breaks the uniformity among solutions of one CSP
instance, concentrating on the bicoloring of k-uniform random hypergraphs. We
show that for small k the clustering transition can be delayed in this way to
higher density of constraints, and that this strategy has a positive impact on
the performances of Simulated Annealing algorithms. We characterize the modest
gain that can be expected in the large k limit from the simple implementation
of the biasing idea studied here. This paper contains also a contribution of a
more methodological nature, made of a review and extension of the methods to
determine numerically the discontinuous dynamic transition threshold.Comment: 32 pages, 16 figure
- …
