310 research outputs found
Fatigue crack growth in a laser shock peened residual stress field
Laser Shock Peening is a surface treatment technique used in the aerospace sector to increase fatigue life, as well as resistance to fretting fatigue and stress corrosion cracking. In this study, laser shock peening was applied to a 6-mm-thick middle-crack tension specimen made of aluminium 2524-T351. Residual stress was measured with neutron diffraction and the contour method, along the predicted crack path prior to fatigue testing. Fatigue crack growth test results showed that fatigue life improved by a factor of 4 compared to an untreated component, owing to a significant crack growth rate reduction inside the laser peened area. A linear-elastic finite-element crack growth prediction model was also developed, obtaining predicted results in excellent agreement with the experimental data.</p
Development of a fretting-fatigue mapping concept: The effect of material properties and surface treatments
Fretting-fatigue induced by combined localized cyclic contact motion and external bulk fatigue loadings may result in premature and dramatic failure of the contacting components. Depending on fretting and fatigue loading conditions, crack nucleation and possibly crack propagation can be activated. This paper proposes a procedure for estimating these two damage thresholds. The crack nucleation boundary is formalized by applying the Crossland high cycle fatigue criterion, taking into account the stress gradient and the ensuing #size##effect#. The prediction of the crack propagation condition is formalized using a short crack arrest description. Applied to an AISI 1034 steel, this methodology allows the development of an original material response fretting-fatigue map (FFM). The impact of material properties and surface treatments is investigated
On the Accuracy of Finite Element Models Predicting Residual Stresses in Quenched Stainless Steel
Prediction of residual stress profiles after quenching is important for a range of industry applications. Finite element method (FEM) models have the capability of simulate the cooling and stress evolution during quenching; however, they are very dependent on the heat transfer coefficient (HTC) imposed on the surface. In this paper, an analysis of the HTC effect on the accuracy of the residual stress profile after quenching a 304L stainless steel Jominy sample was conducted. The FEM model was validated in its thermal accuracy using thermocouples and the residual stress profile was measured using the contour method. The results show that a thermally validated FEM model may yield results which overestimate the tensile residual stress and underestimates the compressive residual stress maxima while accurately calculating the maxima positions from the quenched edge. The FEM model accuracy was not improved by modifying the HTC or by using a different thermal expansion coefficient. The results are discussed in terms of the effect of plasticity due to twinning in the residual stresses calculated by the FEM model
Un élément fini de poutre fissurée application à la dynamique des arbres tournants
International audienceDans ce travail on présente une méthode originale de construction d'un élément fini de poutre affectée de fissurations. La souplesse additionnelle due à la présence des fissures est identifiée à partir de calculs éléments finis tridimensionnels tenant compte des conditions de contact unilatéral entre les lèvres. Cette souplesse est répartie sur toute la longueur de l'élément dont on se propose de construire la matrice de rigidité. La démarche permet un gain considérable en temps de calcul par rapport à la représentation nodale de la section fissurée lors de l'intégration temporelle de systèmes différentiels en dynamique des structures
The incremental contour method using asymmetric stiffness cuts
An incremental Contour Method (iCM) of residual stress measurement is proposed where residual stresses in the body of interest are sequentially reduced by successive contour cuts and the risk of stress re-distribution plastic- ity is mitigated or eliminated. The cutting-induced plasticity is known to cause significant inaccuracies when try- ing to measure the near-yield residual stresses using a conventional single cut contour method. The iCM procedure implements a new displacement data processing approach for the general case of sectioning at an ar- bitrary plane where the cut parts do not possess mirror-symmetric elastic stiffness. The basis for the new asymmetric stiffness data analysis approach is presented and the accuracy of the new method demonstrated using both numerical and experimental case studies
Towards good practice guidelines for the contour method of residual stress measurement
Accurate measurement of residual stress in metallic components using the contour method relies on the achievement of a good quality cut, on the appropriate measurement of the deformed cut surface and on the robust analysis of the measured data. There is currently no published standard or code of practice for the contour method. As a first step towards such a standard, this study draws on research investigations addressing the three main steps in the method: how best to cut the specimens; how to measure the deformation contour of the cut surface; and how to analyse the data. Good practice guidance is provided throughout the text accompanied by more detailed observations and advice tabulated in Appendi
About the heat sources generated during fatigue crack growth: What consequences on the stress intensity factor?
During cyclic loading of a cracked metallic alloy at room temperature, heat sources are generated and produce a heterogeneous temperature field around the crack tip. Those heat sources are: (i) the thermo-elastic coupling source, (ii) the intrinsic dissipation due to microplasticity in the material, and (iii) the cyclic plasticity dissipated into heat in the reverse cyclic plastic zone (RCPZ) ahead of the crack tip. The thermoelastic source is computed by finite element analysis in agreement with classic linear thermoelasticity theory. The intrinsic dissipation due to microplasticity is experimentally estimated by carrying out self-heating fatigue tests on uncracked specimens, and then approximating its values in the cracked specimens by using self-heating curves. The cyclic plastic strain energy dissipated into heat in the RCPZ is also experimentally quantified by carrying out fatigue crack growth tests and using infrared measurements. The temperature fields, generated by the three types of heat sources, are separately computed by using the linearity of the heat diffusion equation. Afterward, the stress fields, associated with each thermal effect and induced by the material thermal expansion, are computed by considering the hypothesis of the linear elastic fracture mechanics (LEFM). Thus, the mode I stress intensity factor is calculated by taking into account the thermal effect associated with each heat source. The consequenceson K, DK and RK = Kmin/Kmax are discussed. It is shown that the heat sources do not modify significantly DK, but the modification of RK can be significant since the effects are proportionalto the loading frequency.Bourse Ecole Doctorale ENSA
Determination of Double-K Fracture Parameters of Concrete Using Split-Tension Cube: A Revised Procedure
- …
