1,584 research outputs found

    Searching for OH maser emission towards the MIPSGAL compact Galactic bubbles

    Get PDF
    We conducted radio observations searching for OH 18-cm maser emission from a sample of 169 unclassified MIPSGAL compact Galactic bubbles. These sources are thought to be the circumstellar envelopes of different kinds of evolved stars. Our observations were aimed at shedding light on the nature of MIPSGAL bubbles, since their characterisation is a fundamental aid for the development of accurate physical models of stellar and Galaxy evolution. The maser emission is observatively linked to the last stages of the life of low- and intermediate-mass stars, which may constitute a significant fraction of the MIPSGAL bubbles. In particular OH masers are usually observed towards post-AGB stars. Our observations were performed with the Green Bank Telescope and, for each source, produced spectra around the four OH 18-cm transitions. The observations were compared with archive interferometer data in order to exclude possible contamination from nearby sources. The main result is that the OH maser emission is not a common feature among the MIPSGAL bubbles, with only one certain detection. We conclude that among the MIPSGAL bubbles the post-AGB stars could be very rare

    Auroral Radio Emission from Stars: the case of CU Virginis

    Get PDF
    CU Virginis is a rapidly rotating Magnetic Chemically Peculiar star with at present unique characteristics as radio emitter. The most intriguing one is the presence of intense, 100% circularly polarized radiation ascribed to Cyclotron Maser. Each time the star rotates, this highly beamed emission points two times toward the Earth, like a pulsar. We observed CU Vir in April 2010 with the EVLA in two bands centered at 1450 and 1850 MHz. We covered nearly the whole rotational period, confirming the presence of the two pulses at a flux density up to 20 mJy. Dynamical spectra, obtained with unprecedented spectral and temporal sensitivity, allow us to clearly see the different time delays as a function of the frequency. We interpret this behaviour as a propagation effect of the radiation inside the stellar magnetosphere. The emerging scenario suggests interesting similarities with the auroral radio emission from planets, in particular with the Auroral Kilometric Radiation (AKR) from Earth, which originates at few terrestrial radii above the magnetic poles and was only recently discovered to be highly beamed. We conclude that the magnetospheres of CU Vir, Earth and other planets, maybe also exoplanets, could have similar geometrical and physical characteristics in the regions where the cyclotron maser is generated. In addition, the pulses are perfect "markers" of the rotation period. This has given us for the first time the possibility to measure with extraordinary accuracy the spin down of a star on or near the main sequence.Comment: 18 pages, 4 figures, Accepted to APJ Letter, EVLA special issu

    A three-dimensional model for the radio emission of magnetic chemically peculiar stars

    Get PDF
    In this paper we present a three-dimensional numerical model for the radio emission of Magnetic Chemically Peculiar stars, on the hypothesis that energetic electrons emit by the gyrosynchrotron mechanism. For this class of radio stars, characterized by a mainly dipolar magnetic field whose axis is tilted with respect to the rotational axis, the geometry of the magnetosphere and its deformation due to the stellar rotation are determined. The radio emitting region is determined by the physical conditions of the magnetosphere and of the stellar wind. Free-free absorption by the thermal plasma trapped in the inner magnetosphere is also considered. Several free parameters are involved in the model, such as the size of the emitting region, the energy spectrum and the number density of the emitting electrons, and the characteristics of the plasma in the inner magnetosphere. By solving the equation of radiative transfer, along a path parallel to the line of sight, the radio brightness distribution and the total flux density as a function of stellar rotation are computed. As the model is applied to simulate the observed 5 GHz lightcurves of HD37479 and HD37017, several possible magnetosphere configurations are found. After simulations at other frequencies, in spite of the large number of parameters involved in the modeling, two solutions in the case of HD37479 and only one solution in the case of HD37017 match the observed spectral indices. The results of our simulations agree with the magnetically confined wind-shock model in a rotating magnetosphere. The X-ray emission from the inner magnetosphere is also computed, and found to be consistent with the observations.Comment: 15 pages, 10 figures, A&A in pres

    Expanded Very Large Array Observations of the Nebula Around G79.29+0.46

    Get PDF
    We have observed the radio nebula surrounding the Galactic luminous blue variable candidate G79.29+0.46 with the Expanded Very Large Array (EVLA) at 6 cm. These new radio observations allow a morphological comparison between the radio emission, which traces the ionized gas component, and the mid-IR emission, a tracer of the dust component. The InfraRed Array Camera (8 μm) and the Multiband Imaging Photometer for Spitzer (24 μm and 70 μm) images have been reprocessed and compared with the EVLA map. We confirm the presence of a second shell at 24 μm and also provide evidence for its detection at 70 μm. The differences between the spatial morphology of the radio and mid-IR maps indicate the existence of two dust populations, the cooler one emitting mostly at longer wavelengths. Analysis of the two dusty, nested shells have provided us with an estimate of the characteristic timescales for shell ejection, providing important constraints for stellar evolutionary models. Finer details of the ionized gas distribution can be appreciated thanks to the improved quality of the new 6 cm image, most notably the highly structured texture of the nebula. Evidence of interaction between the nebula and the surrounding interstellar medium can be seen in the radio map, including brighter features that delineate regions where the shell structure is locally modified. In particular, the brighter filaments in the southwest region appear to frame the shocked southwestern clump reported from CO observations
    corecore